These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 30036045)
1. Triboelectric Nanogenerator Driven Self-Powered Photoelectrochemical Water Splitting Based on Hematite Photoanodes. Wei A; Xie X; Wen Z; Zheng H; Lan H; Shao H; Sun X; Zhong J; Lee ST ACS Nano; 2018 Aug; 12(8):8625-8632. PubMed ID: 30036045 [TBL] [Abstract][Full Text] [Related]
2. Hybridized Mechanical and Solar Energy-Driven Self-Powered Hydrogen Production. Wei X; Wen Z; Liu Y; Zhai N; Wei A; Feng K; Yuan G; Zhong J; Qiang Y; Sun X Nanomicro Lett; 2020 Apr; 12(1):88. PubMed ID: 34138116 [TBL] [Abstract][Full Text] [Related]
3. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649 [TBL] [Abstract][Full Text] [Related]
4. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922 [TBL] [Abstract][Full Text] [Related]
5. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices. Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520 [TBL] [Abstract][Full Text] [Related]
6. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535 [TBL] [Abstract][Full Text] [Related]
7. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation. Liu PF; Wang C; Wang Y; Li Y; Zhang B; Zheng LR; Jiang Z; Zhao H; Yang HG Sci Bull (Beijing); 2021 May; 66(10):1013-1021. PubMed ID: 36654246 [TBL] [Abstract][Full Text] [Related]
8. Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes. Choi MJ; Kim TL; Choi KS; Sohn W; Lee TH; Lee SA; Park H; Jeong SY; Yang JW; Lee S; Jang HW ACS Appl Mater Interfaces; 2022 Feb; 14(6):7788-7795. PubMed ID: 35040620 [TBL] [Abstract][Full Text] [Related]
9. Multilayered Hematite Nanowires with Thin-Film Silicon Photovoltaics in an All-Earth-Abundant Hybrid Tandem Device for Solar Water Splitting. Urbain F; Tang P; Smirnov V; Welter K; Andreu T; Finger F; Arbiol J; Morante JR ChemSusChem; 2019 Apr; 12(7):1428-1436. PubMed ID: 30633450 [TBL] [Abstract][Full Text] [Related]
10. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. Wang P; Pan L; Wang J; Xu M; Dai G; Zou H; Dong K; Wang ZL ACS Nano; 2018 Sep; 12(9):9433-9440. PubMed ID: 30205007 [TBL] [Abstract][Full Text] [Related]
11. Oxygen-Vacancy-Dominated Cocatalyst/Hematite Interface for Boosting Solar Water Splitting. Wang L; Zhu J; Liu X ACS Appl Mater Interfaces; 2019 Jun; 11(25):22272-22277. PubMed ID: 31244023 [TBL] [Abstract][Full Text] [Related]
12. Hematite decorated with nanodot-like cobalt (oxy)hydroxides for boosted photoelectrochemical water oxidation. Chong R; Wang Z; Fan M; Wang L; Chang Z; Zhang L J Colloid Interface Sci; 2023 Jan; 629(Pt B):217-226. PubMed ID: 36152578 [TBL] [Abstract][Full Text] [Related]
13. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting. Ji M; Cai J; Ma Y; Qi L ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010 [TBL] [Abstract][Full Text] [Related]
14. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Mao L; Huang YC; Fu Y; Dong CL; Shen S Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607 [TBL] [Abstract][Full Text] [Related]
15. Efficient Acidic Photoelectrochemical Water Splitting Enabled by Ru Single Atoms Anchored on Hematite Photoanodes. Li TT; Cui JY; Xu M; Song K; Yin ZH; Meng C; Liu H; Wang JJ Nano Lett; 2024 Jan; 24(3):958-965. PubMed ID: 38207219 [TBL] [Abstract][Full Text] [Related]
16. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting. Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489 [TBL] [Abstract][Full Text] [Related]
17. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. Cheng G; Lin ZH; Du ZL; Wang ZL ACS Nano; 2014 Feb; 8(2):1932-9. PubMed ID: 24467273 [TBL] [Abstract][Full Text] [Related]
18. Surface Modification of Hematite Photoanodes with CeO Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429 [TBL] [Abstract][Full Text] [Related]
19. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Tamirat AG; Rick J; Dubale AA; Su WN; Hwang BJ Nanoscale Horiz; 2016 Jul; 1(4):243-267. PubMed ID: 32260645 [TBL] [Abstract][Full Text] [Related]
20. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]