These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30036055)

  • 41. A user's guide to channelrhodopsin variants: features, limitations and future developments.
    Lin JY
    Exp Physiol; 2011 Jan; 96(1):19-25. PubMed ID: 20621963
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoactivation of channelrhodopsin.
    Ernst OP; Murcia PAS; Daldrop P; Tsunoda SP; Kateriya S; Hegemann P
    J Biol Chem; 2008 Jan; 283(3):1637-1643. PubMed ID: 17993465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Channelrhodopsin C1C2: Photocycle kinetics and interactions near the central gate.
    VanGordon MR; Prignano LA; Dempski RE; Rick SW; Rempe SB
    Biophys J; 2021 May; 120(9):1835-1845. PubMed ID: 33705762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics of and intermediates in a photocycle branching reaction of the photoactive yellow protein from Ectothiorhodospira halophila.
    Hendriks J; van Stokkum IH; Crielaard W; Hellingwerf KJ
    FEBS Lett; 1999 Sep; 458(2):252-6. PubMed ID: 10481075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrostatic Control of Photoisomerization in Channelrhodopsin 2.
    Liang R; Yu JK; Meisner J; Liu F; Martinez TJ
    J Am Chem Soc; 2021 Apr; 143(14):5425-5437. PubMed ID: 33794085
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of a Natural Green Light Absorbing Chloride Conducting Channelrhodopsin from Proteomonas sulcata.
    Wietek J; Broser M; Krause BS; Hegemann P
    J Biol Chem; 2016 Feb; 291(8):4121-7. PubMed ID: 26740624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells.
    Peng K; Liu S; Lv F; Fu X; Hussain S; Zhao H; Liu L; Wang S
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24655-24661. PubMed ID: 32391678
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas.
    Wang H; Sugiyama Y; Hikima T; Sugano E; Tomita H; Takahashi T; Ishizuka T; Yawo H
    J Biol Chem; 2009 Feb; 284(9):5685-96. PubMed ID: 19103605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultra light-sensitive and fast neuronal activation with the Ca²+-permeable channelrhodopsin CatCh.
    Kleinlogel S; Feldbauer K; Dempski RE; Fotis H; Wood PG; Bamann C; Bamberg E
    Nat Neurosci; 2011 Apr; 14(4):513-8. PubMed ID: 21399632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ion selectivity and competition in channelrhodopsins.
    Schneider F; Gradmann D; Hegemann P
    Biophys J; 2013 Jul; 105(1):91-100. PubMed ID: 23823227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae.
    Ogren JI; Yi A; Mamaev S; Li H; Lugtenburg J; DeGrip WJ; Spudich JL; Rothschild KJ
    Biochemistry; 2015 Jan; 54(2):377-88. PubMed ID: 25469620
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational modeling of channelrhodopsin-2 photocurrent characteristics in relation to neural signaling.
    Stefanescu RA; Shivakeshavan RG; Khargonekar PP; Talathi SS
    Bull Math Biol; 2013 Nov; 75(11):2208-40. PubMed ID: 24026336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Properties of an optogenetic model for olfactory stimulation.
    Genovese F; Thews M; Möhrlen F; Frings S
    J Physiol; 2016 Jul; 594(13):3501-16. PubMed ID: 26857095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin.
    Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS
    Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps.
    Verhoefen MK; Bamann C; Blöcher R; Förster U; Bamberg E; Wachtveitl J
    Chemphyschem; 2010 Oct; 11(14):3113-22. PubMed ID: 20730849
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-resolved fourier transform infrared study of structural changes in the last steps of the photocycles of Glu-204 and Leu-93 mutants of bacteriorhodopsin.
    Kandori H; Yamazaki Y; Hatanaka M; Needleman R; Brown LS; Richter HT; Lanyi JK; Maeda A
    Biochemistry; 1997 Apr; 36(17):5134-41. PubMed ID: 9136874
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy.
    Krause N; Engelhard C; Heberle J; Schlesinger R; Bittl R
    FEBS Lett; 2013 Oct; 587(20):3309-13. PubMed ID: 24036447
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2.
    Campagnola L; Wang H; Zylka MJ
    J Neurosci Methods; 2008 Mar; 169(1):27-33. PubMed ID: 18187202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.