These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30036063)

  • 21. Cryoflotation: densities of amorphous and crystalline ices.
    Loerting T; Bauer M; Kohl I; Watschinger K; Winkel K; Mayer E
    J Phys Chem B; 2011 Dec; 115(48):14167-75. PubMed ID: 21879742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amorphous and crystalline ices studied by dielectric spectroscopy.
    Plaga LJ; Raidt A; Fuentes Landete V; Amann-Winkel K; Massani B; Gasser TM; Gainaru C; Loerting T; Böhmer R
    J Chem Phys; 2019 Jun; 150(24):244501. PubMed ID: 31255070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.
    Lin C; Yong X; Tse JS; Smith JS; Sinogeikin SV; Kenney-Benson C; Shen G
    Phys Rev Lett; 2017 Sep; 119(13):135701. PubMed ID: 29341714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limits of metastability in amorphous ices: the neutron scattering Debye-Waller factor.
    Amann-Winkel K; Löw F; Handle PH; Knoll W; Peters J; Geil B; Fujara F; Loerting T
    Phys Chem Chem Phys; 2012 Dec; 14(47):16386-91. PubMed ID: 23132426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.
    Xu L; Giovambattista N; Buldyrev SV; Debenedetti PG; Stanley HE
    J Chem Phys; 2011 Feb; 134(6):064507. PubMed ID: 21322705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversibility and isotope effect of the calorimetric glass --> liquid transition of low-density amorphous ice.
    Elsaesser MS; Winkel K; Mayer E; Loerting T
    Phys Chem Chem Phys; 2010 Jan; 12(3):708-12. PubMed ID: 20066356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural properties of the amorphous ices: an analysis in terms of distance-ranked neighbors and angular correlations.
    Saitta AM; Strässle T; Klotz S
    J Phys Chem B; 2006 Mar; 110(8):3595-603. PubMed ID: 16494415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Reorientation Dynamics Govern the Glass Transitions of the Amorphous Ices.
    Shephard JJ; Salzmann CG
    J Phys Chem Lett; 2016 Jun; 7(12):2281-5. PubMed ID: 27243277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron Beam-Induced Transformation in High-Density Amorphous Ices.
    Xu H; Ångström J; Eklund T; Amann-Winkel K
    J Phys Chem B; 2020 Oct; 124(41):9283-9288. PubMed ID: 32997503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal-like high frequency phonons in the amorphous phases of solid water.
    Schober H; Koza MM; Tölle A; Masciovecchio C; Sette F; Fujara F
    Phys Rev Lett; 2000 Nov; 85(19):4100-3. PubMed ID: 11056634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-Scale Structure and Hyperuniformity of Amorphous Ices.
    Martelli F; Torquato S; Giovambattista N; Car R
    Phys Rev Lett; 2017 Sep; 119(13):136002. PubMed ID: 29341697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using coherent X-rays to follow dynamics in amorphous ices.
    Ladd-Parada M; Li H; Karina A; Kim KH; Perakis F; Reiser M; Dallari F; Striker N; Sprung M; Westermeier F; Grübel G; Nilsson A; Lehmkühler F; Amann-Winkel K
    Environ Sci Atmos; 2022 Nov; 2(6):1314-1323. PubMed ID: 36561555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transitions in pressure-amorphized clathrate hydrates akin to those of amorphous ices.
    Andersson O; Brant Carvalho PHB; Hsu YJ; Häussermann U
    J Chem Phys; 2019 Jul; 151(1):014502. PubMed ID: 31272168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of a new dense amorphous ice.
    Finney JL; Bowron DT; Soper AK; Loerting T; Mayer E; Hallbrucker A
    Phys Rev Lett; 2002 Nov; 89(20):205503. PubMed ID: 12443486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. X-ray studies of the transformation from high- to low-density amorphous water.
    Mariedahl D; Perakis F; Späh A; Pathak H; Kim KH; Benmore C; Nilsson A; Amann-Winkel K
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180164. PubMed ID: 30982458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII.
    Vega C; McBride C; Sanz E; Abascal JL
    Phys Chem Chem Phys; 2005 Apr; 7(7):1450-6. PubMed ID: 19787967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermediate range O-O correlations in supercooled water down to 235 K.
    Pathak H; Späh A; Kim KH; Tsironi I; Mariedahl D; Blanco M; Huotari S; Honkimäki V; Nilsson A
    J Chem Phys; 2019 Jun; 150(22):224506. PubMed ID: 31202250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Medium-range order in amorphous ices revealed by persistent homology.
    Hong S; Kim D
    J Phys Condens Matter; 2019 Nov; 31(45):455403. PubMed ID: 31374556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice.
    Giovambattista N; Sciortino F; Starr FW; Poole PH
    J Chem Phys; 2016 Dec; 145(22):224501. PubMed ID: 27984880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices.
    Andersson S; Al-Halabi A; Kroes GJ; van Dishoeck EF
    J Chem Phys; 2006 Feb; 124(6):64715. PubMed ID: 16483237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.