BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30036144)

  • 1. Robotic Flexible Electronics with Self-Bendable Films.
    Ju H; Jeong J; Kwak P; Kwon M; Lee J
    Soft Robot; 2018 Dec; 5(6):710-717. PubMed ID: 30036144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Locally Actuatable Soft Robotic Film for Actively Reconfiguring Shapes of Flexible Electronics.
    Ju H; Park H; Kim N; Lim J; Jung D; Lee J
    Soft Robot; 2022 Aug; 9(4):767-775. PubMed ID: 34694906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-Form and Deformable Energy Storage as a Forerunner to Next-Generation Smart Electronics.
    Kwak S; Kang J; Nam I; Yi J
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32224996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible/Bendable Acoustofluidics Based on Thin-Film Surface Acoustic Waves on Thin Aluminum Sheets.
    Wang Y; Zhang Q; Tao R; Xie J; Canyelles-Pericas P; Torun H; Reboud J; McHale G; Dodd LE; Yang X; Luo J; Wu Q; Fu Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16978-16986. PubMed ID: 33813830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inkjet-printed bendable antenna for wearable electronics.
    Yu H; Zhang X; Zheng H; Li D; Pu Z
    Int J Bioprint; 2023; 9(4):722. PubMed ID: 37323486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal Nature-Inspired and Amine-Promoted Metallization for Flexible Electronics and Supercapacitors.
    Zhang H; Zhang P; Zhang H; Li X; Lei L; Chen L; Zheng Z; Yu Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28963-28970. PubMed ID: 30080380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic Gel Paper with Long-Term Bendable Electrical Robustness for Use in Flexible Electroluminescent Devices.
    He M; Zhang K; Chen G; Tian J; Su B
    ACS Appl Mater Interfaces; 2017 May; 9(19):16466-16473. PubMed ID: 28441006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials Engineering for Flexible Metallic Thin Film Applications.
    Cordill MJ; Kreiml P; Mitterer C
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Protein-Based, Water-Insoluble, and Bendable Polymer with Ionic Conductivity: A Roadmap for Flexible and Green Electronics.
    Kadumudi FB; Jahanshahi M; Mehrali M; Zsurzsan TG; Taebnia N; Hasany M; Mohanty S; Knott A; Godau B; Akbari M; Dolatshahi-Pirouz A
    Adv Sci (Weinh); 2019 Mar; 6(5):1801241. PubMed ID: 30886791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Multifunctional Electronics: Flexible NBT-Based Film with a Large Electrocaloric Effect and High Energy Storage Property.
    Yang C; Han Y; Feng C; Lin X; Huang S; Cheng X; Cheng Z
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6082-6089. PubMed ID: 31939651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epitaxial Lift-Off of Centimeter-Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics.
    Shen L; Wu L; Sheng Q; Ma C; Zhang Y; Lu L; Ma J; Ma J; Bian J; Yang Y; Chen A; Lu X; Liu M; Wang H; Jia CL
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28639318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for Flexible Electronics.
    Yan S; Zhang G; Jiang H; Li F; Zhang L; Xia Y; Wang Z; Wu Y; Li H
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10736-10744. PubMed ID: 30801171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.
    Gao Y; Asadirad M; Yao Y; Dutta P; Galstyan E; Shervin S; Lee KH; Pouladi S; Sun S; Li Y; Rathi M; Ryou JH; Selvamanickam V
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29565-29572. PubMed ID: 27734670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress on Graphene Flexible Photodetectors.
    Wang M; Xiao Y; Li Y; Han L; Sun Z; He L; Liu R; Hu K
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems.
    Chang HY; Yang S; Lee J; Tao L; Hwang WS; Jena D; Lu N; Akinwande D
    ACS Nano; 2013 Jun; 7(6):5446-52. PubMed ID: 23668386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments.
    Phan HP; Dinh T; Nguyen TK; Qamar A; Nguyen T; Dau VT; Han J; Dao DV; Nguyen NT
    J Hazard Mater; 2020 Jul; 394():122486. PubMed ID: 32234659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications.
    Hirotani J; Ohno Y
    Top Curr Chem (Cham); 2019 Jan; 377(1):3. PubMed ID: 30600416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices.
    Han Y; Cui Y; Liu X; Wang Y
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible molecular-scale electronic devices.
    Park S; Wang G; Cho B; Kim Y; Song S; Ji Y; Yoon MH; Lee T
    Nat Nanotechnol; 2012 Jun; 7(7):438-42. PubMed ID: 22659606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.