These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30036545)

  • 1. Quantitative imaging of receptor-ligand engagement in intact live animals.
    Rudkouskaya A; Sinsuebphon N; Ward J; Tubbesing K; Intes X; Barroso M
    J Control Release; 2018 Sep; 286():451-459. PubMed ID: 30036545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor.
    Rudkouskaya A; Sinsuebphon N; Ochoa M; Chen SJ; Mazurkiewicz JE; Intes X; Barroso M
    Theranostics; 2020; 10(22):10309-10325. PubMed ID: 32929350
    [No Abstract]   [Full Text] [Related]  

  • 3. Macroscopic Fluorescence Lifetime Imaging for Monitoring of Drug-Target Engagement.
    Ochoa M; Rudkouskaya A; Smith JT; Intes X; Barroso M
    Methods Mol Biol; 2022; 2394():837-856. PubMed ID: 35094361
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Smith JT; Sinsuebphon N; Rudkouskaya A; Michalet X; Intes X; Barroso M
    bioRxiv; 2023 Apr; ():. PubMed ID: 36747671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET.
    Smith JT; Sinsuebphon N; Rudkouskaya A; Michalet X; Intes X; Barroso M
    Biophys Rep (N Y); 2023 Jun; 3(2):100110. PubMed ID: 37251213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Trastuzumab-HER2 Engagement In Vitro and In Vivo.
    Rudkouskaya A; Smith JT; Intes X; Barroso M
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33348564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of illumination geometry for lifetime-based measurements in whole-body preclinical imaging.
    Sinsuebphon N; Rudkouskaya A; Barroso M; Intes X
    J Biophotonics; 2018 Oct; 11(10):e201800037. PubMed ID: 29806238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive in vivo imaging of near infrared-labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET.
    Abe K; Zhao L; Periasamy A; Intes X; Barroso M
    PLoS One; 2013; 8(11):e80269. PubMed ID: 24278268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo phasor analysis of stoichiometry and pharmacokinetics using short-lifetime near-infrared dyes and time-gated imaging.
    Chen SJ; Sinsuebphon N; Rudkouskaya A; Barroso M; Intes X; Michalet X
    J Biophotonics; 2019 Mar; 12(3):e201800185. PubMed ID: 30421551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence Lifetime Imaging for Quantification of Targeted Drug Delivery in Varying Tumor Microenvironments.
    Verma A; Pandey V; Sherry C; James C; Matteson K; Smith JT; Rudkouskaya A; Intes X; Barroso M
    bioRxiv; 2024 Mar; ():. PubMed ID: 38293105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative non-invasive imaging of target engagement in small animals.
    Park K
    J Control Release; 2018 Sep; 286():485. PubMed ID: 30213377
    [No Abstract]   [Full Text] [Related]  

  • 12. Single-Cell Live Imaging.
    Hiratsuka T; Komatsu N
    Methods Mol Biol; 2019; 1979():409-421. PubMed ID: 31028651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT.
    Tang J; Zhang L; Liu Y; Zhang Q; Qin Y; Yin Y; Yuan W; Yang Y; Xie Y; Zhang Z; He Q
    Int J Pharm; 2013 Sep; 454(1):31-40. PubMed ID: 23850793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles.
    Gravier J; Sancey L; Hirsjärvi S; Rustique E; Passirani C; Benoît JP; Coll JL; Texier I
    Mol Pharm; 2014 Sep; 11(9):3133-44. PubMed ID: 25098740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tagging Transferrin Receptor with a Disulfide FRET Probe To Gauge the Redox State in Endosomal Compartments.
    Bi X; Yin J; Zhang D; Zhang X; Balamkundu S; Lescar J; Dedon PC; Tam JP; Liu CF
    Anal Chem; 2020 Sep; 92(18):12460-12466. PubMed ID: 32686399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems.
    Tortorella S; Karagiannis TC
    Curr Drug Deliv; 2014; 11(4):427-43. PubMed ID: 24387131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale Live Imaging Using Förster Resonance Energy Transfer (FRET) for Evaluating the Biological Behavior of Nanoparticles as Drug Carriers.
    Ishizawa K; Togami K; Tada H; Chono S
    J Pharm Sci; 2020 Dec; 109(12):3608-3616. PubMed ID: 32926888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.
    Grecco HE; Lidke KA; Heintzmann R; Lidke DS; Spagnuolo C; Martinez OE; Jares-Erijman EA; Jovin TM
    Microsc Res Tech; 2004 Nov; 65(4-5):169-79. PubMed ID: 15630694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescent imaging method for analyzing the biodistribution of therapeutic monoclonal antibodies that can distinguish intact antibodies from their breakdown products.
    Suzuki T; Miyazaki C; Ishii-Watabe A; Tada M; Sakai-Kato K; Kawanishi T; Kawasaki N
    MAbs; 2015; 7(4):759-69. PubMed ID: 25891896
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Smith JT; Rudkouskaya A; Gao S; Gupta JM; Ulku A; Bruschini C; Charbon E; Weiss S; Barroso M; Intes X; Michalet X
    Optica; 2022 May; 9(5):532-544. PubMed ID: 35968259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.