BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30036807)

  • 1. The influence of Magnafloc10 on the acidic, alkaline, and electrodialytic desorption of metals from mine tailings.
    Pedersen KB; Reinardy HC; Jensen PE; Ottosen LM; Junttila J; Frantzen M
    J Environ Manage; 2018 Oct; 224():130-139. PubMed ID: 30036807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of submarine copper mine tailing disposal from the 1970s on Repparfjorden, northern Norway.
    Sternal B; Junttila J; Skirbekk K; Forwick M; Carroll J; Pedersen KB
    Mar Pollut Bull; 2017 Jul; 120(1-2):136-153. PubMed ID: 28502452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term dispersion and availability of metals from submarine mine tailing disposal in a fjord in Arctic Norway.
    Pedersen KB; Jensen PE; Sternal B; Ottosen LM; Henning MV; Kudahl MM; Junttila J; Skirbekk K; Frantzen M
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32901-32912. PubMed ID: 28550634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of climate change on metal leaching and partitioning for submarine mine tailings disposal.
    Pedersen KB; Lejon T; Jensen PE; Ottosen LM; Frantzen M; Evenset A
    Mar Pollut Bull; 2022 Nov; 184():114197. PubMed ID: 36208554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrodialytic remediation of copper mine tailings.
    Hansen HK; Rojo A; Ottosen LM
    J Hazard Mater; 2005 Jan; 117(2-3):179-83. PubMed ID: 15629576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lability of toxic elements in Submarine Tailings Disposal: The relationship between metal fractionation and metal uptake by sandworms (Alitta virens).
    Simonsen AMT; Pedersen KB; Jensen PE; Elberling B; Bach L
    Sci Total Environ; 2019 Dec; 696():133903. PubMed ID: 31454604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings.
    Zhou DM; Deng CF; Alshawabkeh AN; Cang L
    Environ Int; 2005 Aug; 31(6):885-90. PubMed ID: 15992926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper Analysis by Two Different Procedures of Sequential Extraction after Electrodialytic Remediation of Mine Tailings.
    Lazo A; Lazo P; Urtubia A; Lobos MG; Gutiérrez C; Hansen HK
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31627367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodialytic remediation of suspended mine tailings.
    Hansen HK; Rojo A; Pino D; Ottosen LM; Ribeiro AB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):832-6. PubMed ID: 18569292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a Sequential Extraction Method for Analyzing Cu Distribution in Pre-Treated Mine Tailings after Electrodialytic Remediation.
    Lazo A; Hansen HK; Lazo P; Gutiérrez C
    Int J Environ Res Public Health; 2019 Feb; 16(4):. PubMed ID: 30781600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.
    Jiang S; Huang L; Nguyen TA; Ok YS; Rudolph V; Yang H; Zhang D
    Chemosphere; 2016 Jan; 142():64-71. PubMed ID: 26206747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodialytic remediation of copper mine tailings using bipolar electrodes.
    Rojo A; Cubillos L
    J Hazard Mater; 2009 Sep; 168(2-3):1177-83. PubMed ID: 19346067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of metal mobility from copper mine tailings in northern Chile.
    Lam EJ; Gálvez ME; Cánovas M; Montofré IL; Rivero D; Faz A
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11901-15. PubMed ID: 26957432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated weathering of biosolid-amended copper mine tailings.
    Pond AP; White SA; Milczarek M; Thompson TL
    J Environ Qual; 2005; 34(4):1293-301. PubMed ID: 15998851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benthic community status and mobilization of Ni, Cu and Co at abandoned sea deposits for mine tailings in SW Norway.
    Schaanning MT; Trannum HC; Øxnevad S; Ndungu K
    Mar Pollut Bull; 2019 Apr; 141():318-331. PubMed ID: 30955740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana.
    Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB
    Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings.
    Forsberg LS; Ledin S
    Sci Total Environ; 2006 Apr; 358(1-3):21-35. PubMed ID: 15990158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of temporal changes in oxidation rates of sulphides in copper mine tailings at Laver, Northern Sweden.
    Alakangas L; Ohlander B; Lundberg A
    Sci Total Environ; 2010 Feb; 408(6):1386-92. PubMed ID: 19939438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Availability of copper in mine tailings with humic substance addition and uptake by Atriplex halimus.
    Tapia Y; Casanova M; Castillo B; Acuña E; Covarrubias J; Antilén M; Masaguer A
    Environ Monit Assess; 2019 Oct; 191(11):651. PubMed ID: 31628547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.