BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30036821)

  • 1. Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid.
    Zhu L; Zhao N; Tong L; Lv Y; Li G
    Chemosphere; 2018 Nov; 210():734-744. PubMed ID: 30036821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution.
    Zhu L; Tong L; Zhao N; Li J; Lv Y
    Chemosphere; 2019 Mar; 219():493-503. PubMed ID: 30551116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key factors and microscopic mechanisms controlling adsorption of cadmium by surface oxidized and aminated biochars.
    Zhu L; Tong L; Zhao N; Wang X; Yang X; Lv Y
    J Hazard Mater; 2020 Jan; 382():121002. PubMed ID: 31450208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar.
    Fan Q; Sun J; Chu L; Cui L; Quan G; Yan J; Hussain Q; Iqbal M
    Chemosphere; 2018 Sep; 207():33-40. PubMed ID: 29772422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution.
    Dong H; Deng J; Xie Y; Zhang C; Jiang Z; Cheng Y; Hou K; Zeng G
    J Hazard Mater; 2017 Jun; 332():79-86. PubMed ID: 28285109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size.
    Wang S; Zhou Y; Gao B; Wang X; Yin X; Feng K; Wang J
    Chemosphere; 2017 Nov; 186():495-500. PubMed ID: 28806678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions.
    Ahmad M; Usman ARA; Rafique MI; Al-Wabel MI
    Environ Sci Pollut Res Int; 2019 May; 26(15):15136-15152. PubMed ID: 30924040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous biochar-nanoscale zero-valent iron composites: Synthesis, characterization and application for lead ion removal.
    Li S; Yang F; Li J; Cheng K
    Sci Total Environ; 2020 Dec; 746():141037. PubMed ID: 32745850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient removal of Congo red and methylene blue using biochar from Medulla Tetrapanacis modified by potassium carbonate.
    Liu Z; Zhang J; Zhang L; Guan Y; Ji H; Zhang Y; Gao H
    Bioresour Technol; 2023 May; 376():128912. PubMed ID: 36934903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel hydrophilic straw biochar for the adsorption of neonicotinoids: kinetics, thermodynamics, influencing factors, and reuse performance.
    Li S; Zhang Z; Zhang C; He Y; Yi X; Chen Z; Hassaan MA; Nemr AE; Huang M
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):29143-29153. PubMed ID: 36414889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions.
    Li B; Zhang Y; Xu J; Mei Y; Fan S; Xu H
    Chemosphere; 2021 Mar; 267():129283. PubMed ID: 33338711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxidation-induced aging on the adsorption and co-adsorption of tetracycline and Cu
    Nie T; Hao P; Zhao Z; Zhou W; Zhu L
    Sci Total Environ; 2019 Jul; 673():522-532. PubMed ID: 30995586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: Comparison of surface modification methods.
    Zhang D; Li Y; Sun A; Tong S; Su G; Jiang X; Li J; Han W; Sun X; Wang L; Shen J
    Sci Total Environ; 2019 Dec; 694():133701. PubMed ID: 31386958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates.
    Ghaffar A; Ghosh S; Li F; Dong X; Zhang D; Wu M; Li H; Pan B
    Environ Pollut; 2015 Nov; 206():502-9. PubMed ID: 26281762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method.
    Fan Z; Zhang Q; Li M; Niu D; Sang W; Verpoort F
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8330-8339. PubMed ID: 29305807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil.
    Zhang F; Li Y; Zhang G; Li W; Yang L
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9575-9584. PubMed ID: 28247270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process.
    Qian L; Chen B
    J Agric Food Chem; 2014 Jan; 62(2):373-80. PubMed ID: 24364719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into contrasting mechanisms for PAE adsorption on millimeter, micron- and nano-scale biochar.
    Ma S; Jing F; Sohi SP; Chen J
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18636-18650. PubMed ID: 31054059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups.
    Fang Q; Chen B; Lin Y; Guan Y
    Environ Sci Technol; 2014; 48(1):279-88. PubMed ID: 24289306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biochar stabilities and adsorption properties for tetracycline by synthesizing silica-composited biochar.
    Zhao Z; Nie T; Zhou W
    Environ Pollut; 2019 Nov; 254(Pt A):113015. PubMed ID: 31400663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.