These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30036848)

  • 41. Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology.
    Singh J; Saharan V; Kumar S; Gulati P; Kapoor RK
    Crit Rev Biotechnol; 2018 Sep; 38(6):883-901. PubMed ID: 29281904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles.
    Wang P; Wang F; Jiang H; Zhang Y; Zhao M; Xiong R; Ma J
    Water Res; 2020 May; 175():115649. PubMed ID: 32200335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor.
    Serrano D; Suárez S; Lema JM; Omil F
    Water Res; 2011 Oct; 45(16):5323-33. PubMed ID: 21864878
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Membrane bioreactors for water reclamation.
    Tao G; Kekre K; Wei Z; Lee TC; Viswanath B; Seah H
    Water Sci Technol; 2005; 51(6-7):431-40. PubMed ID: 16004005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants.
    Clara M; Kreuzinger N; Strenn B; Gans O; Kroiss H
    Water Res; 2005 Jan; 39(1):97-106. PubMed ID: 15607169
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Operation performance of membrane nitrification bioreactor for ammonia-containing wastewater].
    Wu XY; Zheng P; Hu BL
    Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):279-83. PubMed ID: 16013490
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular weight distribution of a full-scale landfill leachate treatment by membrane bioreactor and nanofiltration membrane.
    Campagna M; Cakmakcı M; Yaman FB; Ozkaya B
    Waste Manag; 2013 Apr; 33(4):866-70. PubMed ID: 23290269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance.
    Mozia S; Tomaszewska M; Morawski AW
    Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants.
    Liao Z; Nguyen MN; Wan G; Xie J; Ni L; Qi J; Li J; Schäfer AI
    J Hazard Mater; 2020 Oct; 397():122779. PubMed ID: 32387831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hybrid bioreactor (HBR) of hollow fiber microfilter membrane and cross-linked laccase aggregates eliminate aromatic pharmaceuticals in wastewaters.
    Ba S; Jones JP; Cabana H
    J Hazard Mater; 2014 Sep; 280():662-70. PubMed ID: 25218263
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergistic action of laccase treatment and membrane filtration during removal of azo dyes in an enzymatic membrane reactor upgraded with electrospun fibers.
    Jankowska K; Su Z; Zdarta J; Jesionowski T; Pinelo M
    J Hazard Mater; 2022 Aug; 435():129071. PubMed ID: 35650748
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.
    Bonvin F; Jost L; Randin L; Bonvin E; Kohn T
    Water Res; 2016 Mar; 90():90-99. PubMed ID: 26724443
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of organic and colloidal fouling on the removal of sulphamethoxazole by nanofiltration membranes.
    Nghiem LD; Espendiller C; Braun G
    Water Sci Technol; 2008; 58(1):163-9. PubMed ID: 18653950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessing potential modifications to the activated sludge process to improve simultaneous removal of a diverse range of micropollutants.
    Petrie B; McAdam EJ; Lester JN; Cartmell E
    Water Res; 2014 Oct; 62():180-92. PubMed ID: 24956600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane coagulation bioreactor (MCBR) for drinking water treatment.
    Tian JY; Liang H; Li X; You SJ; Tian S; Li GB
    Water Res; 2008 Aug; 42(14):3910-20. PubMed ID: 18674791
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment.
    Ma J; Wang Z; He D; Li Y; Wu Z
    Water Res; 2015 Jul; 78():98-110. PubMed ID: 25917391
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline.
    Lin CF; Yu-Chen Lin A; Sri Chandana P; Tsai CY
    Water Res; 2009 Feb; 43(2):389-94. PubMed ID: 19013630
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous transformation of chiral pharmaceuticals in enzymatic membrane bioreactors for advanced wastewater treatment.
    Nguyen LN; Hai FI; McDonald JA; Khan SJ; Price WE; Nghiem LD
    Water Sci Technol; 2017 Oct; 76(7-8):1816-1826. PubMed ID: 28991796
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Post-treatment of the permeate of a submerged anaerobic membrane bioreactor (SAMBR) treating landfill leachate.
    Trzcinski AP; Ofoegbu N; Stuckey DC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(13):1539-48. PubMed ID: 21992219
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low dose powdered activated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors.
    Remy M; van der Marel P; Zwijnenburg A; Rulkens W; Temmink H
    Water Res; 2009 Feb; 43(2):345-50. PubMed ID: 19010512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.