These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 30036970)
1. Towards Tunable Protein-Carrier Wound Dressings Based on Nanocellulose Hydrogels Crosslinked with Calcium Ions. Basu A; Strømme M; Ferraz N Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30036970 [TBL] [Abstract][Full Text] [Related]
2. Hemocompatibility of Ca Basu A; Hong J; Ferraz N Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28941135 [TBL] [Abstract][Full Text] [Related]
3. In Vitro and in Vivo Evaluation of the Wound Healing Properties of Nanofibrillated Cellulose Hydrogels. Basu A; Celma G; Strømme M; Ferraz N ACS Appl Bio Mater; 2018 Dec; 1(6):1853-1863. PubMed ID: 34996286 [TBL] [Abstract][Full Text] [Related]
4. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications. Basu A; Heitz K; Strømme M; Welch K; Ferraz N Carbohydr Polym; 2018 Feb; 181():345-350. PubMed ID: 29253982 [TBL] [Abstract][Full Text] [Related]
6. On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies. Basu A; Lindh J; Ålander E; Strømme M; Ferraz N Carbohydr Polym; 2017 Oct; 174():299-308. PubMed ID: 28821071 [TBL] [Abstract][Full Text] [Related]
7. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Wang X; Cheng F; Liu J; Smått JH; Gepperth D; Lastusaari M; Xu C; Hupa L Acta Biomater; 2016 Dec; 46():286-298. PubMed ID: 27646503 [TBL] [Abstract][Full Text] [Related]
8. Anionic and cationic dextran hydrogels for post-loading and release of proteins. Schillemans JP; Verheyen E; Barendregt A; Hennink WE; Van Nostrum CF J Control Release; 2011 Mar; 150(3):266-71. PubMed ID: 21130815 [TBL] [Abstract][Full Text] [Related]
9. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Liu Y; Sui Y; Liu C; Liu C; Wu M; Li B; Li Y Carbohydr Polym; 2018 May; 188():27-36. PubMed ID: 29525166 [TBL] [Abstract][Full Text] [Related]
10. In situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer. Lo YW; Sheu MT; Chiang WH; Chiu YL; Tu CM; Wang WY; Wu MH; Wang YC; Lu M; Ho HO Acta Biomater; 2019 Mar; 86():280-290. PubMed ID: 30616077 [TBL] [Abstract][Full Text] [Related]
11. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Yoon DS; Lee Y; Ryu HA; Jang Y; Lee KM; Choi Y; Choi WJ; Lee M; Park KM; Park KD; Lee JW Acta Biomater; 2016 Jul; 38():59-68. PubMed ID: 27109762 [TBL] [Abstract][Full Text] [Related]
12. Drug diffusivities in nanofibrillar cellulose hydrogel by combined time-resolved Raman and fluorescence spectroscopy. Zini J; Kekkonen J; Kaikkonen VA; Laaksonen T; Keränen P; Talala T; Mäkynen AJ; Yliperttula M; Nissinen I J Control Release; 2021 Jun; 334():367-375. PubMed ID: 33930478 [TBL] [Abstract][Full Text] [Related]
13. Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. Singh B; Pal L J Mech Behav Biomed Mater; 2012 May; 9():9-21. PubMed ID: 22498279 [TBL] [Abstract][Full Text] [Related]
14. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. Xu C; Zhang Molino B; Wang X; Cheng F; Xu W; Molino P; Bacher M; Su D; Rosenau T; Willför S; Wallace G J Mater Chem B; 2018 Nov; 6(43):7066-7075. PubMed ID: 32254590 [TBL] [Abstract][Full Text] [Related]
15. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. George D; Maheswari PU; Begum KMMS Int J Biol Macromol; 2019 Jul; 132():784-794. PubMed ID: 30951778 [TBL] [Abstract][Full Text] [Related]
16. A Zero-Valent Pd/Fe Loaded and Nanofibrillated Cellulose-Reinforced Carboxymethyl Cellulose Hydrogel for Dechlorination of 2,4,6-Trichlorophenol. Wan XF; Guo C; Li YM; Chai XS; Lin K; Chen GX; Ali A J Nanosci Nanotechnol; 2019 Nov; 19(11):7261-7268. PubMed ID: 31039884 [TBL] [Abstract][Full Text] [Related]
17. Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Dong H; Snyder JF; Tran DT; Leadore JL Carbohydr Polym; 2013 Jun; 95(2):760-7. PubMed ID: 23648039 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Gentamicin and Lidocaine Release Profile from Gum Acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol Based Hydrogels. Singh B; Dhiman A Curr Drug Deliv; 2017; 14(7):981-991. PubMed ID: 28137241 [TBL] [Abstract][Full Text] [Related]
19. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Rezvanian M; Ahmad N; Mohd Amin MC; Ng SF Int J Biol Macromol; 2017 Apr; 97():131-140. PubMed ID: 28064048 [TBL] [Abstract][Full Text] [Related]
20. Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. Laurén P; Lou YR; Raki M; Urtti A; Bergström K; Yliperttula M Eur J Pharm Sci; 2014 Dec; 65():79-88. PubMed ID: 25245005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]