BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30037051)

  • 1. A Vision-Driven Collaborative Robotic Grasping System Tele-Operated by Surface Electromyography.
    Úbeda A; Zapata-Impata BS; Puente ST; Gil P; Candelas F; Torres F
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

  • 6. Megane Pro: Myo-electricity, visual and gaze tracking data acquisitions to improve hand prosthetics.
    Giordaniello F; Cognolato M; Graziani M; Gijsberts A; Gregori V; Saetta G; Hager AM; Tiengo C; Bassetto F; Brugger P; Caputo B; Muller H; Atzori M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1148-1153. PubMed ID: 28813976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic feature selection applied to the recognition of grasping movements in the control of bioprosthetic hand.
    Kurzynski M
    Stud Health Technol Inform; 2015; 210():484-8. PubMed ID: 25991194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal prediction of touch instant during observation of human and robot grasping.
    Craighero L; Bonetti F; Massarenti L; Canto R; Fabbri Destro M; Fadiga L
    Brain Res Bull; 2008 Apr; 75(6):770-4. PubMed ID: 18394523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Electro-Oculogram Based Vision System for Grasp Assistive Devices-A Proof of Concept Study.
    Roy R; Mahadevappa M; Nazarpour K
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34282770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data.
    Palermo F; Cognolato M; Gijsberts A; Muller H; Caputo B; Atzori M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1154-1159. PubMed ID: 28813977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and development of a sensorized cylindrical object for grasping assessment.
    Cordella F; Taffoni F; Raiano L; Carpino G; Pantoni M; Zollo L; Schena E; Guglielmelli E; Formica D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3366-3369. PubMed ID: 28269025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online electromyographic control of a robotic prosthesis.
    Shenoy P; Miller KJ; Crawford B; Rao RN
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Event-Based Robotic Grasping Detection With Neuromorphic Vision Sensor and Event-Grasping Dataset.
    Li B; Cao H; Qu Z; Hu Y; Wang Z; Liang Z
    Front Neurorobot; 2020; 14():51. PubMed ID: 33162883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of EMG patterns from proximal arm muscles during object- and orientation-specific grasps.
    Martelloni C; Carpaneto J; Micera S
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2529-36. PubMed ID: 19605312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Tactile Data From 3D Vision and Target Robotic Grasps.
    Zapata-Impata BS; Gil P; Mezouar Y; Torres F
    IEEE Trans Haptics; 2021; 14(1):57-67. PubMed ID: 32746383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synergy-driven approach to a myoelectric hand.
    Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel EMG Interface for Individuals With Tetraplegia to Pilot Robot Hand Grasping.
    Tigra W; Navarro B; Cherubini A; Gorron X; Gelis A; Fattal C; Guiraud D; Azevedo Coste C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):291-298. PubMed ID: 28113511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.