These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30037051)

  • 21. Relation between object properties and EMG during reaching to grasp.
    Fligge N; Urbanek H; van der Smagt P
    J Electromyogr Kinesiol; 2013 Apr; 23(2):402-10. PubMed ID: 23207412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bimanual shoulder flexion system with surface electromyography for hemiplegic patients after stroke: A preliminary study.
    Park K; Kwon S; Kim J; Rim B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975388. PubMed ID: 22275592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems.
    Liu T; Guo Y; Yang S; Yin S; Zhu J
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28216555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Robotic Pushing and Grasping Method Based on Vision Transformer and Convolution.
    Yu S; Zhai DH; Xia Y
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluid Pressure Monitoring-Based Strategy for Delicate Grasping of Fragile Objects by A Robotic Hand with Fluid Fingertips.
    Nishimura T; Suzuki Y; Tsuji T; Watanabe T
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assistive Grasping Based on Laser-point Detection with Application to Wheelchair-mounted Robotic Arms.
    Zhong M; Zhang Y; Yang X; Yao Y; Guo J; Wang Y; Liu Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Learning Method for Grasping Novel Objects Using Dexterous Hands.
    Shang W; Song F; Zhao Z; Gao H; Cong S; Li Z
    IEEE Trans Cybern; 2022 May; 52(5):2750-2762. PubMed ID: 33001823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-stroke wrist rehabilitation assisted with an intention-driven functional electrical stimulation (FES)-robot system.
    Hu XL; Tong KY; Li R; Chen M; Xue JJ; Ho SK; Chen PN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975424. PubMed ID: 22275625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques.
    de Freitas PB; Jaric S
    Exp Brain Res; 2009 Apr; 194(4):605-18. PubMed ID: 19247643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CNN-Based Hand Grasping Prediction and Control via Postural Synergy Basis Extraction.
    Liu Q; Li M; Yin C; Qian G; Meng W; Ai Q; Hu J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial neural network EMG classifier for functional hand grasp movements prediction.
    Gandolla M; Ferrante S; Ferrigno G; Baldassini D; Molteni F; Guanziroli E; Cotti Cottini M; Seneci C; Pedrocchi A
    J Int Med Res; 2017 Dec; 45(6):1831-1847. PubMed ID: 27677300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human Grasp Mechanism Understanding, Human-Inspired Grasp Control and Robotic Grasping Planning for Agricultural Robots.
    Zheng W; Guo N; Zhang B; Zhou J; Tian G; Xiong Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of object shape and visual feedback on hand configuration during grasping.
    Schettino LF; Adamovich SV; Poizner H
    Exp Brain Res; 2003 Jul; 151(2):158-66. PubMed ID: 12783144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography.
    Siu HC; Shah JA; Stirling LA
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27792155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method to study precision grip control in viscoelastic force fields using a robotic gripper.
    Lambercy O; Metzger JC; Santello M; Gassert R
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):39-48. PubMed ID: 25014953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of forearm and thumb muscle electromyographic responses to the use of laparoscopic instruments with either a finger grasp or a palm grasp.
    Berguer R; Gerber S; Kilpatrick G; Remler M; Beckley D
    Ergonomics; 1999 Dec; 42(12):1634-45. PubMed ID: 10643405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of human grasping behavior: object characteristics and grasp type.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(3):311-23. PubMed ID: 25248214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.