These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 30037056)
1. Aptamer-Based Biosensors to Detect Aquatic Phycotoxins and Cyanotoxins. Cunha I; Biltes R; Sales M; Vasconcelos V Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037056 [TBL] [Abstract][Full Text] [Related]
2. Recent Advances in Aptasensing Strategies for Monitoring Phycotoxins: Promising for Food Safety. Zahraee H; Mehrzad A; Abnous K; Chen CH; Khoshbin Z; Verdian A Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671891 [TBL] [Abstract][Full Text] [Related]
3. Overview: Harmful algal blooms and natural toxins in fresh and marine waters - Exposure, occurrence, detection, toxicity, control, management and policy. Dionysiou D Toxicon; 2010 May; 55(5):907-8. PubMed ID: 20045019 [No Abstract] [Full Text] [Related]
4. Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art. Zhang W; Dixon MB; Saint C; Teng KS; Furumai H ACS Sens; 2018 Jul; 3(7):1233-1245. PubMed ID: 29974739 [TBL] [Abstract][Full Text] [Related]
5. Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. Zhao Y; Li L; Yan X; Wang L; Ma R; Qi X; Wang S; Mao X J Hazard Mater; 2022 Jan; 421():126690. PubMed ID: 34315019 [TBL] [Abstract][Full Text] [Related]
6. Marine Toxins Detection by Biosensors Based on Aptamers. Ye W; Liu T; Zhang W; Zhu M; Liu Z; Kong Y; Liu S Toxins (Basel); 2019 Dec; 12(1):. PubMed ID: 31861315 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins. Lei Z; Lei P; Guo J; Wang Z Talanta; 2022 Oct; 248():123607. PubMed ID: 35661001 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices. Miglione A; Napoletano M; Cinti S Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562905 [TBL] [Abstract][Full Text] [Related]
10. Detection to treatment and global impacts of algal toxins. Parsaeimehr A; Lutzu GA; Rahman Shah M; Parra Saldivar R Front Biosci (Schol Ed); 2019 Jun; 11(2):214-235. PubMed ID: 31136994 [TBL] [Abstract][Full Text] [Related]
11. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. Vogiazi V; de la Cruz A; Mishra S; Shanov V; Heineman WR; Dionysiou DD ACS Sens; 2019 May; 4(5):1151-1173. PubMed ID: 31056912 [TBL] [Abstract][Full Text] [Related]
12. Solid Phase Adsorption Toxin Tracking (SPATT) Technology for the Monitoring of Aquatic Toxins: A Review. Roué M; Darius HT; Chinain M Toxins (Basel); 2018 Apr; 10(4):. PubMed ID: 29677131 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Neurotoxic Amino Acids from Marine Waters, Microbial Mats, and Seafood Destined for Human Consumption in the Arabian Gulf. Chatziefthimiou AD; Deitch EJ; Glover WB; Powell JT; Banack SA; Richer RA; Cox PA; Metcalf JS Neurotox Res; 2018 Jan; 33(1):143-152. PubMed ID: 28766269 [TBL] [Abstract][Full Text] [Related]
14. A validated UPLC-MS/MS method for the surveillance of ten aquatic biotoxins in European brackish and freshwater systems. Greer B; McNamee SE; Boots B; Cimarelli L; Guillebault D; Helmi K; Marcheggiani S; Panaiotov S; Breitenbach U; Akçaalan R; Medlin LK; Kittler K; Elliott CT; Campbell K Harmful Algae; 2016 May; 55():31-40. PubMed ID: 28073545 [TBL] [Abstract][Full Text] [Related]
15. Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms. Farrer D; Counter M; Hillwig R; Cude C Toxins (Basel); 2015 Feb; 7(2):457-77. PubMed ID: 25664510 [TBL] [Abstract][Full Text] [Related]
16. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone. Li Z; Zhang S; Yu T; Dai Z; Wei Q Anal Chem; 2019 Aug; 91(16):10448-10457. PubMed ID: 31192585 [TBL] [Abstract][Full Text] [Related]
17. Algal toxin profiles in Nigerian coastal waters (Gulf of Guinea) using passive sampling and liquid chromatography coupled to mass spectrometry. Zendong Z; Kadiri M; Herrenknecht C; Nézan E; Mazzeo A; Hess P Toxicon; 2016 May; 114():16-27. PubMed ID: 26896635 [TBL] [Abstract][Full Text] [Related]
18. Aptamers and Aptasensors for Highly Specific Recognition and Sensitive Detection of Marine Biotoxins: Recent Advances and Perspectives. Zhao L; Huang Y; Dong Y; Han X; Wang S; Liang X Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30366456 [TBL] [Abstract][Full Text] [Related]
19. [Determination of phycotoxins in aquatic medium by capillary electrophoresis]. Bouaïcha N; Hennion MC; Sandra P C R Seances Soc Biol Fil; 1997; 191(3):313-27. PubMed ID: 9295962 [TBL] [Abstract][Full Text] [Related]
20. On-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry for the analysis of cyanotoxins in algal blooms. Fayad PB; Roy-Lachapelle A; Duy SV; Prévost M; Sauvé S Toxicon; 2015 Dec; 108():167-75. PubMed ID: 26494036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]