BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30037093)

  • 21. Integrated Piezoresistive Normal Force Sensors Fabricated Using Transfer Processes with Stiction Effect Temporary Handling.
    Liu N; Zhong P; Zheng C; Sun K; Zhong Y; Yang H
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection.
    Alhoshany A; Sivashankar S; Mashraei Y; Omran H; Salama KN
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active tactile sensing of small insect force by a soft microfinger toward microfinger-insect interactions.
    Konishi S; Mori F; Kakehi Y; Shimizu A; Sano F; Koyanagi K
    Sci Rep; 2022 Oct; 12(1):16963. PubMed ID: 36216851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Fingertip with Embedded Fiber-Shaped Sensing Arrays for High Resolution Tactile Sensing.
    Weichart J; Sivananthaguru P; Coulter FB; Burger T; Hierold C
    Soft Robot; 2024 Apr; ():. PubMed ID: 38662448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin.
    Qiu J; Guo X; Chu R; Wang S; Zeng W; Qu L; Zhao Y; Yan F; Xing G
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40716-40725. PubMed ID: 31596567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a Capacitance-to-Digital Converter Based on Iterative Delay-Chain Discharge in 180 nm CMOS Technology.
    Cicalini M; Piotto M; Bruschi P; Dei M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Texture recognition and localization in amorphous robotic skin.
    Hughes D; Correll N
    Bioinspir Biomim; 2015 Sep; 10(5):055002. PubMed ID: 26352901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile Sensor and DCNN.
    Pohtongkam S; Srinonchat J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer.
    Li T; Luo H; Qin L; Wang X; Xiong Z; Ding H; Gu Y; Liu Z; Zhang T
    Small; 2016 Sep; 12(36):5042-5048. PubMed ID: 27323288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated intelligent tactile system for a humanoid robot.
    Bao R; Tao J; Zhao J; Dong M; Li J; Pan C
    Sci Bull (Beijing); 2023 May; 68(10):1027-1037. PubMed ID: 37120379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer.
    Hamzah AA; Yunas J; Majlis BY; Ahmad I
    Sensors (Basel); 2008 Nov; 8(11):7438-7452. PubMed ID: 27873938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A silicon-based tactile sensor for finger-mounted applications.
    Beebe DJ; Denton DD; Radwin RG; Webster JG
    IEEE Trans Biomed Eng; 1998 Feb; 45(2):151-9. PubMed ID: 9473838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of multichannel soft tactile sensors having fingerprint structure.
    Tsutsui H; Murashima Y; Honma N; Kobayashi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2496-9. PubMed ID: 25570497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel Piezoresistive MEMS Pressure Sensors Based on Temporary Bonding Technology.
    Song P; Si C; Zhang M; Zhao Y; He Y; Liu W; Wang X
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible three-axial force sensor for soft and highly sensitive artificial touch.
    Viry L; Levi A; Totaro M; Mondini A; Mattoli V; Mazzolai B; Beccai L
    Adv Mater; 2014 May; 26(17):2659-64, 2614. PubMed ID: 24677245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Power-Efficient Capacitive Read-Out Circuit With Parasitic-Cancellation for MEMS Cochlea Sensors.
    Wang S; Koickal TJ; Hamilton A; Mastropaolo E; Cheung R; Abel A; Smith LS; Wang L
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):25-37. PubMed ID: 25826808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Design and Characterization of a Flexible Tactile Sensing Array for Robot Skin.
    Ji Z; Zhu H; Liu H; Liu N; Chen T; Yang Z; Sun L
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27897993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial Tactile Receptor System for Sensitive Pressure-Neural Spike Conversion.
    Luo S; Zhang B; Wang X; Cheng G; Wei D; Wei D
    J Phys Chem Lett; 2024 Jun; 15(22):5862-5867. PubMed ID: 38804506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a Sensitive Balloon Sensor for Safe Human-Robot Interaction.
    Kim D; Han S; Kim T; Kim C; Lee D; Kang D; Koh JS
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic tactile sensors for three-dimensional contact force measurements.
    Nie B; Li R; Brandt JD; Pan T
    Lab Chip; 2014 Nov; 14(22):4344-53. PubMed ID: 25200961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.