BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30037100)

  • 1. Neurogenic Differentiation of Human Dental Pulp Stem Cells on Graphene-Polycaprolactone Hybrid Nanofibers.
    Seonwoo H; Jang KJ; Lee D; Park S; Lee M; Park S; Lim KT; Kim J; Chung JH
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30037100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient osteogenic differentiation of the dental pulp stem cells on β-glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers.
    Hosseini FS; Enderami SE; Hadian A; Abazari MF; Ardeshirylajimi A; Saburi E; Soleimanifar F; Nazemisalman B
    J Cell Physiol; 2019 Aug; 234(8):13951-13958. PubMed ID: 30633333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGFBP5 promotes angiogenic and neurogenic differentiation potential of dental pulp stem cells.
    Li J; Diao S; Yang H; Cao Y; Du J; Yang D
    Dev Growth Differ; 2019 Dec; 61(9):457-465. PubMed ID: 31599466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Interleukin 6 in Osteogenic and Neurogenic Differentiation Potentials of Dental Pulp Stem Cells.
    Park YT; Lee SM; Kou X; Karabucak B
    J Endod; 2019 Nov; 45(11):1342-1348. PubMed ID: 31540748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs.
    Itoh Y; Sasaki JI; Hashimoto M; Katata C; Hayashi M; Imazato S
    J Dent Res; 2018 Sep; 97(10):1137-1143. PubMed ID: 29702010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Green-reduced" graphene oxide induces in vitro an enhanced biomimetic mineralization of polycaprolactone electrospun meshes.
    Marrella A; Tedeschi G; Giannoni P; Lagazzo A; Sbrana F; Barberis F; Quarto R; Puglisi F; Scaglione S
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():1044-1053. PubMed ID: 30274035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Apical Complex and the Coronal Pulp as a Stem Cell Source for Dentin-pulp Regeneration.
    Park MK; Kim S; Jeon M; Jung UW; Lee JH; Choi HJ; Choi JE; Song JS
    J Endod; 2020 Feb; 46(2):224-231.e3. PubMed ID: 31836138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cell-sheet technology.
    Fujii Y; Kawase-Koga Y; Hojo H; Yano F; Sato M; Chung UI; Ohba S; Chikazu D
    Stem Cell Res Ther; 2018 Feb; 9(1):24. PubMed ID: 29391049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Structured 3D Electrospun Conical Scaffold: A Tool for Dental Pulp Regeneration.
    Terranova L; Louvrier A; Hébraud A; Meyer C; Rolin G; Schlatter G; Meyer F
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5775-5787. PubMed ID: 34846849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels.
    Yao L; Flynn N
    Spine J; 2018 Jun; 18(6):1070-1080. PubMed ID: 29452287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite electrospun nanofibers of reduced graphene oxide grafted with poly(3-dodecylthiophene) and poly(3-thiophene ethanol) and blended with polycaprolactone.
    Sarvari R; Sattari S; Massoumi B; Agbolaghi S; Beygi-Khosrowshahi Y; Kahaie-Khosrowshahi A
    J Biomater Sci Polym Ed; 2017 Oct; 28(15):1740-1761. PubMed ID: 28691869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Ag and TiO
    Karagoz S; Kiremitler NB; Sakir M; Salem S; Onses MS; Sahmetlioglu E; Ceylan A; Yilmaz E
    Ecotoxicol Environ Saf; 2020 Jan; 188():109856. PubMed ID: 31722800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dental Pulp Stem Cells: From Discovery to Clinical Application.
    Sui B; Wu D; Xiang L; Fu Y; Kou X; Shi S
    J Endod; 2020 Sep; 46(9S):S46-S55. PubMed ID: 32950195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminin- and basement membrane-polycaprolactone blend nanofibers as a scaffold for regenerative medicine.
    Neal RA; Lenz SM; Wang T; Abebayehu D; Brooks BP; Ogle RC; Botchwey EA
    Nanomater Environ; 2014 Sep; 2(1):1-12. PubMed ID: 27570767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Calcitonin Gene-related Peptide on Dental Pulp Stem Cell Viability, Proliferation, and Differentiation.
    Michot B; Casey SM; Gibbs JL
    J Endod; 2020 Jul; 46(7):950-956. PubMed ID: 32387076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dental Pulp Stem Cells: Advances to Applications.
    Tsutsui TW
    Stem Cells Cloning; 2020; 13():33-42. PubMed ID: 32104005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-directed assembly of luminal nanofibril fillers in nerve conduits for peripheral nerve repair.
    Mao W; Lee E; Cho W; Kang BJ; Yoo HS
    Biomaterials; 2023 Oct; 301():122209. PubMed ID: 37421670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal Stem Cells Derived from Human Inflamed Dental Pulp Exhibit Impaired Immunomodulatory Capacity In Vitro.
    Inostroza C; Vega-Letter AM; Brizuela C; Castrillón L; Saint Jean N; Duran CM; Carrión F
    J Endod; 2020 Aug; 46(8):1091-1098.e2. PubMed ID: 32422164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of platelet-rich plasma on dental stem cells derived from human impacted third molars.
    Lee UL; Jeon SH; Park JY; Choung PH
    Regen Med; 2011 Jan; 6(1):67-79. PubMed ID: 21175288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells.
    Kumar A; Kumar V; Rattan V; Jha V; Bhattacharyya S
    Mol Neurobiol; 2017 Aug; 54(6):4672-4682. PubMed ID: 27422132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.