BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30037151)

  • 1. Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme.
    Chen C; Lee MH; Weng CF; Leong MK
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30037151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Prediction of Intestinal Permeability by Hierarchical Support Vector Regression.
    Lee MH; Ta GH; Weng CF; Leong MK
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32438630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of promiscuous p-glycoprotein inhibition using a novel machine learning scheme.
    Leong MK; Chen HB; Shih YH
    PLoS One; 2012; 7(3):e33829. PubMed ID: 22439003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of inhibition of promiscuous breast cancer resistance protein (BCRP/ABCG2).
    Ding YL; Shih YH; Tsai FY; Leong MK
    PLoS One; 2014; 9(3):e90689. PubMed ID: 24614353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Hierarchical Support Vector Regression-Based In Silico Model for Caco-2 Permeability.
    Ta GH; Jhang CS; Weng CF; Leong MK
    Pharmaceutics; 2021 Jan; 13(2):. PubMed ID: 33525340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico prediction of the mutagenicity of nitroaromatic compounds using a novel two-QSAR approach.
    Ding YL; Lyu YC; Leong MK
    Toxicol In Vitro; 2017 Apr; 40():102-114. PubMed ID: 28027902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Prediction of PAMPA Effective Permeability Using a Two-QSAR Approach.
    Chi CT; Lee MH; Weng CF; Leong MK
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein.
    Bikadi Z; Hazai I; Malik D; Jemnitz K; Veres Z; Hari P; Ni Z; Loo TW; Clarke DM; Hazai E; Mao Q
    PLoS One; 2011; 6(10):e25815. PubMed ID: 21991360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational models for identifying potential P-glycoprotein substrates and inhibitors.
    Crivori P; Reinach B; Pezzetta D; Poggesi I
    Mol Pharm; 2006; 3(1):33-44. PubMed ID: 16686367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV; Sawada GA; Watson IA; Raub TJ
    Mol Pharm; 2013 Apr; 10(4):1249-61. PubMed ID: 23363443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives.
    Ghaemian P; Shayanfar A
    Curr Comput Aided Drug Des; 2019; 15(3):212-224. PubMed ID: 30280673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight Analysis of Promiscuous Estrogen Receptor α-Ligand Binding by a Novel Machine Learning Scheme.
    Hou TY; Weng CF; Leong MK
    Chem Res Toxicol; 2018 Aug; 31(8):799-813. PubMed ID: 30019586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P-Glycoprotein.
    Ohashi R; Watanabe R; Esaki T; Taniguchi T; Torimoto-Katori N; Watanabe T; Ogasawara Y; Takahashi T; Tsukimoto M; Mizuguchi K
    Mol Pharm; 2019 May; 16(5):1851-1863. PubMed ID: 30933526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Prediction of Skin Permeability Using a Two-QSAR Approach.
    Wu YW; Ta GH; Lung YC; Weng CF; Leong MK
    Pharmaceutics; 2022 Apr; 14(5):. PubMed ID: 35631545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case Study 8: Status of the Structural Mass Action Kinetic Model of P-gp-Mediated Transport Through Confluent Cell Monolayers.
    Bentz J; Ellens H
    Methods Mol Biol; 2021; 2342():737-763. PubMed ID: 34272715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-glycoprotein recognition of substrates and circumvention through rational drug design.
    Raub TJ
    Mol Pharm; 2006; 3(1):3-25. PubMed ID: 16686365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: An approach using passive membrane permeability and affinity to P-glycoprotein.
    Döppenschmitt S; Spahn-Langguth H; Regårdh CG; Langguth P
    J Pharm Sci; 1999 Oct; 88(10):1067-72. PubMed ID: 10514357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiclass Classifier for P-Glycoprotein Substrates, Inhibitors, and Non-Active Compounds.
    Mora Lagares L; Minovski N; Novič M
    Molecules; 2019 May; 24(10):. PubMed ID: 31130601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology Modeling of the Human P-glycoprotein (ABCB1) and Insights into Ligand Binding through Molecular Docking Studies.
    Mora Lagares L; Minovski N; Caballero Alfonso AY; Benfenati E; Wellens S; Culot M; Gosselet F; Novič M
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32517082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors.
    Klepsch F; Vasanthanathan P; Ecker GF
    J Chem Inf Model; 2014 Jan; 54(1):218-29. PubMed ID: 24050383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.