These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30037241)

  • 1. Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes.
    Scemama A; Benali A; Jacquemin D; Caffarel M; Loos PF
    J Chem Phys; 2018 Jul; 149(3):034108. PubMed ID: 30037241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic Construction of Nodal Surfaces within Quantum Monte Carlo: The Case of FeS.
    Scemama A; Garniron Y; Caffarel M; Loos PF
    J Chem Theory Comput; 2018 Mar; 14(3):1395-1402. PubMed ID: 29376369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excited States with Selected Configuration Interaction-Quantum Monte Carlo: Chemically Accurate Excitation Energies and Geometries.
    Dash M; Feldt J; Moroni S; Scemama A; Filippi C
    J Chem Theory Comput; 2019 Sep; 15(9):4896-4906. PubMed ID: 31348645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rydberg states with quantum Monte Carlo.
    Bande A; Lüchow A; Della Sala F; Görling A
    J Chem Phys; 2006 Mar; 124(11):114114. PubMed ID: 16555881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring CIPSI Expansions for QMC Calculations of Electronic Excitations: The Case Study of Thiophene.
    Dash M; Moroni S; Filippi C; Scemama A
    J Chem Theory Comput; 2021 Jun; 17(6):3426-3434. PubMed ID: 34029098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited states of methylene from quantum Monte Carlo.
    Zimmerman PM; Toulouse J; Zhang Z; Musgrave CB; Umrigar CJ
    J Chem Phys; 2009 Sep; 131(12):124103. PubMed ID: 19791848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom.
    Caffarel M; Daudey JP; Heully JL; Ramírez-Solís A
    J Chem Phys; 2005 Sep; 123(9):94102. PubMed ID: 16164336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the fixed-node error in quantum Monte Carlo calculations of electronic transitions: the case of the singlet n-->pi* (CO) transition of the acrolein.
    Bouabça T; Ben Amor N; Maynau D; Caffarel M
    J Chem Phys; 2009 Mar; 130(11):114107. PubMed ID: 19317531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate nonrelativistic ground-state energies of 3d transition metal atoms.
    Scemama A; Applencourt T; Giner E; Caffarel M
    J Chem Phys; 2014 Dec; 141(24):244110. PubMed ID: 25554136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reference Excitation Energies of Increasingly Large Molecules: A QMC Study of Cyanine Dyes.
    Cuzzocrea A; Moroni S; Scemama A; Filippi C
    J Chem Theory Comput; 2022 Feb; 18(2):1089-1095. PubMed ID: 35080893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz.
    Dupuy N; Bouaouli S; Mauri F; Sorella S; Casula M
    J Chem Phys; 2015 Jun; 142(21):214109. PubMed ID: 26049481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Monte Carlo study of the Ne atom and the Ne+ ion.
    Drummond ND; López Ríos P; Ma A; Trail JR; Spink GG; Towler MD; Needs RJ
    J Chem Phys; 2006 Jun; 124(22):224104. PubMed ID: 16784260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taming the fixed-node error in diffusion Monte Carlo via range separation.
    Scemama A; Giner E; Benali A; Loos PF
    J Chem Phys; 2020 Nov; 153(17):174107. PubMed ID: 33167659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energies of the first row atoms from quantum Monte Carlo.
    Brown MD; Trail JR; Ríos PL; Needs RJ
    J Chem Phys; 2007 Jun; 126(22):224110. PubMed ID: 17581047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.
    Bouabça T; Braïda B; Caffarel M
    J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions.
    Giner E; Scemama A; Caffarel M
    J Chem Phys; 2015 Jan; 142(4):044115. PubMed ID: 25637977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.
    Zulfikri H; Amovilli C; Filippi C
    J Chem Theory Comput; 2016 Mar; 12(3):1157-68. PubMed ID: 26761421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full Wave Function Optimization with Quantum Monte Carlo-A Study of the Dissociation Energies of ZnO, FeO, FeH, and CrS.
    Ludovicy J; Mood KH; Lüchow A
    J Chem Theory Comput; 2019 Oct; 15(10):5221-5229. PubMed ID: 31433631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.