These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30037260)

  • 1. Communication: Computing the Helmholtz capacitance of charged insulator-electrolyte interfaces from the supercell polarization.
    Zhang C
    J Chem Phys; 2018 Jul; 149(3):031103. PubMed ID: 30037260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge compensation at the interface between the polar NaCl(111) surface and a NaCl aqueous solution.
    Sayer T; Zhang C; Sprik M
    J Chem Phys; 2017 Sep; 147(10):104702. PubMed ID: 28915740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of Asymmetric Electric Double Layers at Electrified Oxide/Electrolyte Interfaces.
    Jia M; Zhang C; Cheng J
    J Phys Chem Lett; 2021 May; 12(19):4616-4622. PubMed ID: 33973792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic theory of finite-size effects in supercell modeling of charged interfaces.
    Pan C; Yi S; Hu Z
    Phys Chem Chem Phys; 2019 Jul; 21(27):14858-14864. PubMed ID: 31232403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular understanding of the Helmholtz capacitance difference between Cu(100) and graphene electrodes.
    Li XY; Jin XF; Yang XH; Wang X; Le JB; Cheng J
    J Chem Phys; 2023 Feb; 158(8):084701. PubMed ID: 36859091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Electrified Pt(111)-H
    Le JB; Chen A; Li L; Xiong JF; Lan J; Liu YP; Iannuzzi M; Cheng J
    JACS Au; 2021 May; 1(5):569-577. PubMed ID: 34467320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of Surface Chemistry and Electric Double Layer at TiO
    Zhang C; Hutter J; Sprik M
    J Phys Chem Lett; 2019 Jul; 10(14):3871-3876. PubMed ID: 31241948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of electrical double layers in organic electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2010; 12(20):5468-79. PubMed ID: 20467670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
    Haskins JB; Lawson JW
    J Chem Phys; 2016 May; 144(18):184707. PubMed ID: 27179500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface.
    Le JB; Fan QY; Li JQ; Cheng J
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33028519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redefining electrical double layer thickness in narrow confinements: effect of solvent polarization.
    Das S; Chakraborty S; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051508. PubMed ID: 23004768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
    Feng G; Qiao R; Huang J; Dai S; Sumpter BG; Meunier V
    Phys Chem Chem Phys; 2011 Jan; 13(3):1152-61. PubMed ID: 21079823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Response and Charge Inversion at Polarized Gold Electrode.
    Andersson L; Sprik M; Hutter J; Zhang C
    Angew Chem Int Ed Engl; 2024 Sep; ():e202413614. PubMed ID: 39313472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Effects of Electrode Material, Single Crystal Facet, and Electrolyte Ion on the Helmholtz Capacitance of Metal/Aqueous Solution Interfaces.
    Wang X; Wang Y; Kuang Y; Le JB
    J Phys Chem Lett; 2023 Sep; 14(35):7833-7839. PubMed ID: 37624858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces.
    Zhou S; Panse KS; Motevaselian MH; Aluru NR; Zhang Y
    ACS Nano; 2020 Dec; 14(12):17515-17523. PubMed ID: 33227191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.
    Sinha S; Sachar HS; Das S
    Langmuir; 2018 Jan; 34(4):1760-1766. PubMed ID: 29294274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Squishy capacitor" model for electrical double layers and the stability of charged interfaces.
    Partenskii MB; Jordan PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011112. PubMed ID: 19658658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors.
    Yuan H; Shimotani H; Ye J; Yoon S; Aliah H; Tsukazaki A; Kawasaki M; Iwasa Y
    J Am Chem Soc; 2010 Dec; 132(51):18402-7. PubMed ID: 21141862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.