These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30037264)

  • 1. Many-particle mobility and diffusion tensors for objects in viscous sheets.
    Sokolov Y; Diamant H
    J Chem Phys; 2018 Jul; 149(3):034901. PubMed ID: 30037264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Rotne-Prager-Yamakawa approximation for periodic systems in a shear flow.
    Mizerski KA; Wajnryb E; Zuk PJ; Szymczak P
    J Chem Phys; 2014 May; 140(18):184103. PubMed ID: 24832249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.
    Fiore AM; Swan JW
    J Chem Phys; 2018 Jan; 148(4):044114. PubMed ID: 29390810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RPYFMM: Parallel Adaptive Fast Multipole Method for Rotne-Prager-Yamakawa Tensor in Biomolecular Hydrodynamics Simulations.
    Guan W; Cheng X; Huang J; Huber G; Li W; McCammon JA; Zhang B
    Comput Phys Commun; 2018 Jun; 227():99-108. PubMed ID: 30147116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix.
    Palanisamy D; den Otter WK
    J Chem Phys; 2018 May; 148(19):194112. PubMed ID: 30307211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides a Fast but Still Accurate Treatment of Hydrodynamic Interactions in Brownian Dynamics Simulations of Biological Macromolecules.
    Tworek JW; Elcock AH
    J Chem Theory Comput; 2023 Aug; 19(15):5099-5111. PubMed ID: 37409946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides A Fast But Still Accurate Treatment Of Hydrodynamic Interactions In Brownian Dynamics Simulations Of Biological Macromolecules.
    Tworek JW; Elcock AH
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model.
    Wani YM; Kovakas PG; Nikoubashman A; Howard MP
    J Chem Phys; 2022 Jan; 156(2):024901. PubMed ID: 35032985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized Rotne-Prager-Yamakawa approximation for Brownian dynamics in shear flow in bounded, unbounded, and periodic domains.
    Cichocki B; Szymczak P; Żuk PJ
    J Chem Phys; 2021 Mar; 154(12):124905. PubMed ID: 33810690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions.
    Lorenzo T; Marco L
    J Colloid Interface Sci; 2022 Oct; 624():637-649. PubMed ID: 35696787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell.
    Felderhof BU; Sellier A
    J Chem Phys; 2012 Feb; 136(5):054703. PubMed ID: 22320755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid sampling of stochastic displacements in Brownian dynamics simulations.
    Fiore AM; Balboa Usabiaga F; Donev A; Swan JW
    J Chem Phys; 2017 Mar; 146(12):124116. PubMed ID: 28388117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active Brownian filaments with hydrodynamic interactions: conformations and dynamics.
    Martín-Gómez A; Eisenstecken T; Gompper G; Winkler RG
    Soft Matter; 2019 May; 15(19):3957-3969. PubMed ID: 31012481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids.
    Rex M; Löwen H
    Eur Phys J E Soft Matter; 2008; 26(1-2):143-50. PubMed ID: 18324352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Brownian dynamics study on the self-diffusion of charged tracers in dilute polyelectrolyte solutions.
    Zhou T; Chen SB
    J Chem Phys; 2005 Mar; 122(12):124905. PubMed ID: 15836422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility and settling rate of agglomerates of polydisperse nanoparticles.
    Spyrogianni A; Karadima KS; Goudeli E; Mavrantzas VG; Pratsinis SE
    J Chem Phys; 2018 Feb; 148(6):064703. PubMed ID: 29448768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems.
    Długosz M; Antosiewicz JM
    J Phys Chem B; 2015 Jul; 119(26):8425-39. PubMed ID: 26068580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large scale Brownian dynamics of confined suspensions of rigid particles.
    Sprinkle B; Balboa Usabiaga F; Patankar NA; Donev A
    J Chem Phys; 2017 Dec; 147(24):244103. PubMed ID: 29289140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible biomolecules.
    Elcock AH
    J Chem Theory Comput; 2013 Jul; 9(7):3224-3239. PubMed ID: 23914146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.