BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30037401)

  • 1. Selection of cost-effective magnesium sources for fluidized struvite crystallization.
    Wang J; Ye X; Zhang Z; Ye ZL; Chen S
    J Environ Sci (China); 2018 Aug; 70():144-153. PubMed ID: 30037401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of supersaturation ratio on phosphorus recovery from synthetic anaerobic digester supernatant through a struvite crystallization fluidized bed reactor.
    Ghosh S; Lobanov S; Lo VK
    Environ Technol; 2019 Jun; 40(15):2000-2010. PubMed ID: 29388510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor.
    Guadie A; Xia S; Jiang W; Zhou L; Zhang Z; Hermanowicz SW; Xu X; Shen S
    J Environ Sci (China); 2014 Apr; 26(4):765-74. PubMed ID: 25079406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolving the high-cost with acidity: A happy encounter between fluidized struvite crystallization and wastewater from activated carbon manufacture.
    Ye X; Chen M; Wang W; Shen J; Wu J; Huang W; Xiao L; Lin X; Ye ZL; Chen S
    Water Res; 2021 Jan; 188():116521. PubMed ID: 33099265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization.
    Shaddel S; Grini T; Andreassen JP; Østerhus SW; Ucar S
    Chemosphere; 2020 Oct; 256():126968. PubMed ID: 32428738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorus from black water.
    Li X; Zhao X; Zhang J; Hao J; Zhang Q
    Water Res; 2022 Aug; 221():118678. PubMed ID: 35752092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.
    Shih YJ; Abarca RRM; de Luna MDG; Huang YH; Lu MC
    Chemosphere; 2017 Apr; 173():466-473. PubMed ID: 28135681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of phosphorus recovery reactor for enlargement of struvite crystals using seawater as the magnesium source.
    Wongphudphad P; Kemacheevakul P
    Water Sci Technol; 2019 Apr; 79(7):1376-1386. PubMed ID: 31123237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of saline water ionic strength on phosphorus recovery from synthetic swine wastewater.
    Zhang Z; Li B; Wicaksana F; Yu W; Young B
    J Environ Sci (China); 2022 Mar; 113():81-91. PubMed ID: 34963552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Struvite precipitation in wastewater treatment plants anaerobic digestion supernatants using a magnesium oxide by-product.
    Aguilar-Pozo VB; Chimenos JM; Elduayen-Echave B; Olaciregui-Arizmendi K; López A; Gómez J; Guembe M; García I; Ayesa E; Astals S
    Sci Total Environ; 2023 Sep; 890():164084. PubMed ID: 37207781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer.
    Iqbal M; Bhuiyan H; Mavinic DS
    Environ Technol; 2008 Nov; 29(11):1157-67. PubMed ID: 18975848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling.
    Huang H; Xiao D; Liu J; Hou L; Ding L
    Sci Rep; 2015 May; 5():10183. PubMed ID: 25960246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach.
    Bhuiyan MI; Mavinic DS; Koch FA
    Water Sci Technol; 2008; 57(2):175-81. PubMed ID: 18235168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Struvite pellet crystallization in a high-strength nitrogen and phosphorus stream.
    Li Y; Liu M; Yuan Z; Zou J
    Water Sci Technol; 2013; 68(6):1300-5. PubMed ID: 24056427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonium nitrogen removal from slurry-type swine wastewater by pretreatment using struvite crystallization for nitrogen control of anaerobic digestion.
    Kim BU; Lee WH; Lee HJ; Rim JM
    Water Sci Technol; 2004; 49(5-6):215-22. PubMed ID: 15137426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality.
    Shaddel S; Grini T; Ucar S; Azrague K; Andreassen JP; Østerhus SW
    Water Res; 2020 Apr; 173():115572. PubMed ID: 32062222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings.
    Ghosh S; Lobanov S; Lo VK
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19063-19077. PubMed ID: 31102218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Economic feasibility of phosphorus recovery through struvite from liquid anaerobic digestate of animal waste.
    Min KJ; Park KY
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):40703-40714. PubMed ID: 33547611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.
    Cusick RD; Ullery ML; Dempsey BA; Logan BE
    Water Res; 2014 May; 54():297-306. PubMed ID: 24583521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.