These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 3003741)
1. Detection of single base-pair mismatches in DNA by chemical modification followed by electrophoresis in 15% polyacrylamide gel. Novack DF; Casna NJ; Fischer SG; Ford JP Proc Natl Acad Sci U S A; 1986 Feb; 83(3):586-90. PubMed ID: 3003741 [TBL] [Abstract][Full Text] [Related]
3. Detection of single-base mutations by reaction of DNA heteroduplexes with a water-soluble carbodiimide followed by primer extension: application to products from the polymerase chain reaction. Ganguly A; Prockop DJ Nucleic Acids Res; 1990 Jul; 18(13):3933-9. PubMed ID: 2374715 [TBL] [Abstract][Full Text] [Related]
4. Binding of DNA to albumin and transferrin modified by treatment with water-soluble carbodiimides. Huckett B; Gordhan H; Hawtrey R; Moodley N; Ariatti M; Hawtrey A Biochem Pharmacol; 1986 Apr; 35(8):1249-57. PubMed ID: 3964300 [TBL] [Abstract][Full Text] [Related]
5. Reactivity of ferrocenylcarbodiimide with DNA duplex containing single-mismatched base pairs. Mukumoto K; Watanabe S; Nojima T; Waki M; Takenaka S Anal Sci; 2007 Jun; 23(6):645-9. PubMed ID: 17575345 [TBL] [Abstract][Full Text] [Related]
6. Modification of a ribonuclease from Rhizopus sp. with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide p-toluenesulfonate. Sanda A; Takizawa Y; Iwama M; Irie M J Biochem; 1985 Jul; 98(1):125-32. PubMed ID: 3862665 [TBL] [Abstract][Full Text] [Related]
7. Detection and location of single-base mutations in large DNA fragments by immunomicroscopy. Ganguly A; Rooney JE; Hosomi S; Zeiger AR; Prockop DJ Genomics; 1989 May; 4(4):530-8. PubMed ID: 2744763 [TBL] [Abstract][Full Text] [Related]
8. A highly sensitive technique for staining DNA and RNA in polyacrylamide gels using silver. Boulikas T; Hancock R J Biochem Biophys Methods; 1981 Oct; 5(4):219-28. PubMed ID: 6171588 [TBL] [Abstract][Full Text] [Related]
9. A new packing for separation of DNA restriction fragments by high performance liquid chromatography. Kato Y; Sasaki M; Hashimoto T; Murotsu T; Fukushige S; Matsubara K J Biochem; 1984 Jan; 95(1):83-6. PubMed ID: 6323394 [TBL] [Abstract][Full Text] [Related]
10. Separation of large DNA restriction fragments by high-performance gel filtration on TSKgel DNA-PW. Kato Y; Yamasaki Y; Hashimoto T; Murotsu T; Fukushige S; Matsubara K J Chromatogr; 1985 Mar; 320(2):440-4. PubMed ID: 2993324 [No Abstract] [Full Text] [Related]
11. Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Ganguly A; Rock MJ; Prockop DJ Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10325-9. PubMed ID: 8234293 [TBL] [Abstract][Full Text] [Related]
12. Modification of a major ribonuclease from Aspergillus saitoi with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide. Watanabe H; Sugiyama K; Iwama M; Futaki R; Irie M J Biochem; 1983 Jul; 94(1):63-70. PubMed ID: 6578211 [TBL] [Abstract][Full Text] [Related]
13. Quantitative analysis of carbodiimide modified DNA and immunoprobing by adduct specific antibodies. Wani AA; Yamasaki EF Biochim Biophys Acta; 1991 Feb; 1088(2):259-69. PubMed ID: 2001400 [TBL] [Abstract][Full Text] [Related]
14. Anomalously slow electrophoretic mobilities of DNA restriction fragments in polyacrylamide gels are not eliminated by increasing the gel pore size. Stellwagen A; Stellwagen NC Biopolymers; 1990; 30(3-4):309-24. PubMed ID: 2177663 [TBL] [Abstract][Full Text] [Related]
15. Modification of glucoamylases from Rhizopus sp. with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide. Iwama M; Ohtsuki R; Takahashi T; Irie M J Biochem; 1984 Aug; 96(2):329-36. PubMed ID: 6438070 [TBL] [Abstract][Full Text] [Related]
16. [Effect of carbodiimides on the catalytic properties of cholinesterases]. Volkova RI; Kochetova LM Biokhimiia; 1981 Oct; 46(10):1823-31. PubMed ID: 6946838 [TBL] [Abstract][Full Text] [Related]
17. Site-directed modification of DNA duplexes by chemical ligation. Dolinnaya NG; Sokolova NI; Gryaznova OI; Shabarova ZA Nucleic Acids Res; 1988 May; 16(9):3721-38. PubMed ID: 3375071 [TBL] [Abstract][Full Text] [Related]
18. Deletions of bases in one strand of duplex DNA, in contrast to single-base mismatches, produce highly kinked molecules: possible relevance to the folding of single-stranded nucleic acids. Hsieh CH; Griffith JD Proc Natl Acad Sci U S A; 1989 Jul; 86(13):4833-7. PubMed ID: 2740330 [TBL] [Abstract][Full Text] [Related]
19. Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Maniatis T; Jeffrey A; van deSande H Biochemistry; 1975 Aug; 14(17):3787-94. PubMed ID: 1174504 [TBL] [Abstract][Full Text] [Related]
20. The use of BrCN for assembling modified DNA duplexes and DNA-RNA hybrids; comparison with water-soluble carbodiimide. Dolinnaya NG; Sokolova NI; Ashirbekova DT; Shabarova ZA Nucleic Acids Res; 1991 Jun; 19(11):3067-72. PubMed ID: 1711679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]