BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30037799)

  • 21. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence.
    Carlisle PL; Banerjee M; Lazzell A; Monteagudo C; López-Ribot JL; Kadosh D
    Proc Natl Acad Sci U S A; 2009 Jan; 106(2):599-604. PubMed ID: 19116272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection.
    Jackson BE; Wilhelmus KR; Mitchell BM
    Microb Pathog; 2007; 42(2-3):88-93. PubMed ID: 17241762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SDH2 is involved in proper hypha formation and virulence in Candida albicans.
    Bi S; Lv QZ; Wang TT; Fuchs BB; Hu DD; Anastassopoulou CG; Desalermos A; Muhammed M; Wu CL; Jiang YY; Mylonakis E; Wang Y
    Future Microbiol; 2018 Aug; 13(10):1141-1156. PubMed ID: 30113213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Candida albicans dimorphism as a therapeutic target.
    Jacobsen ID; Wilson D; Wächtler B; Brunke S; Naglik JR; Hube B
    Expert Rev Anti Infect Ther; 2012 Jan; 10(1):85-93. PubMed ID: 22149617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.
    Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ppg1, a PP2A-type protein phosphatase, controls filament extension and virulence in Candida albicans.
    Albataineh MT; Lazzell A; Lopez-Ribot JL; Kadosh D
    Eukaryot Cell; 2014 Dec; 13(12):1538-47. PubMed ID: 25326520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of filamentation can be used to treat disseminated candidiasis.
    Saville SP; Lazzell AL; Bryant AP; Fretzen A; Monreal A; Solberg EO; Monteagudo C; Lopez-Ribot JL; Milne GT
    Antimicrob Agents Chemother; 2006 Oct; 50(10):3312-6. PubMed ID: 17005810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction.
    Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C
    Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans.
    Kadosh D
    Curr Opin Microbiol; 2019 Dec; 52():27-34. PubMed ID: 31129557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Candida albicans PPG1, a serine/threonine phosphatase, plays a vital role in central carbon metabolisms under filament-inducing conditions: A multi-omics approach.
    A L Bataineh MT; Soares NC; Semreen MH; Cacciatore S; Dash NR; Hamad M; Mousa MK; Salam JSA; Al Gharaibeh MF; Zerbini LF; Hamad M
    PLoS One; 2021; 16(12):e0259588. PubMed ID: 34874940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic transcript profiling of Candida albicans infection in zebrafish: a pathogen-host interaction study.
    Chen YY; Chao CC; Liu FC; Hsu PC; Chen HF; Peng SC; Chuang YJ; Lan CY; Hsieh WP; Wong DS
    PLoS One; 2013; 8(9):e72483. PubMed ID: 24019870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans.
    Stokes C; Moran GP; Spiering MJ; Cole GT; Coleman DC; Sullivan DJ
    Fungal Genet Biol; 2007 Sep; 44(9):920-31. PubMed ID: 17251042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection.
    Saville SP; Lazzell AL; Monteagudo C; Lopez-Ribot JL
    Eukaryot Cell; 2003 Oct; 2(5):1053-60. PubMed ID: 14555488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of infection- and defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-zebrafish infection model.
    Kuo ZY; Chuang YJ; Chao CC; Liu FC; Lan CY; Chen BS
    J Innate Immun; 2013; 5(2):137-52. PubMed ID: 23406717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Candida albicans Infection Model in Zebrafish (Danio rerio) for Screening Anticandidal Drugs.
    Kulatunga DCM; Dananjaya SHS; Nikapitiya C; Kim CH; Lee J; De Zoysa M
    Mycopathologia; 2019 Oct; 184(5):559-572. PubMed ID: 31473909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31.
    Lee JE; Oh JH; Ku M; Kim J; Lee JS; Kang SO
    FEBS Lett; 2015 Feb; 589(4):513-20. PubMed ID: 25601565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphatidate phosphatase Pah1 has a role in the hyphal growth and virulence of Candida albicans.
    Mu C; Pan C; Han Q; Liu Q; Wang Y; Sang J
    Fungal Genet Biol; 2019 Mar; 124():47-58. PubMed ID: 30615943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.
    Mech F; Wilson D; Lehnert T; Hube B; Thilo Figge M
    Cytometry A; 2014 Feb; 85(2):126-39. PubMed ID: 24259441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans.
    Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M
    Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.