BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30037882)

  • 1. Synaptic convergence of afferent inputs in primary infrared-sensitive nucleus (LTTD) neurons of rattlesnakes (Crotalinae) as the origin for sensory contrast enhancement.
    Bothe MS; Luksch H; Straka H; Kohl T
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30037882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal Substrates for Infrared Contrast Enhancement and Motion Detection in Rattlesnakes.
    Bothe MS; Luksch H; Straka H; Kohl T
    Curr Biol; 2019 Jun; 29(11):1827-1832.e4. PubMed ID: 31104931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox).
    Kohl T; Bothe MS; Luksch H; Straka H; Westhoff G
    J Comp Neurol; 2014 Dec; 522(18):3943-59. PubMed ID: 24989331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal integration in primary trigeminal nucleus of rattlesnake infrared system.
    Stanford LR; Hartline PH
    J Neurophysiol; 1984 May; 51(5):1077-90. PubMed ID: 6726312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial sharpening by second-order trigeminal neurons in crotaline infrared system.
    Stanford LR; Hartline PH
    Brain Res; 1980 Mar; 185(1):115-23. PubMed ID: 7353171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ascending projection of the nucleus of the lateral descending trigeminal tract: a nucleus in the infrared system of the rattlesnake, Crotalus viridis.
    Stanford LR; Schroeder DM; Hartline PH
    J Comp Neurol; 1981 Sep; 201(2):161-73. PubMed ID: 7287924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Deoxyglucose labelling of the infrared sensory system in the rattlesnake, Crotalus viridis.
    Gruberg ER; Newman EA; Hartline PH
    J Comp Neurol; 1984 Nov; 229(3):321-8. PubMed ID: 6501607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for functional compartmentalization of trigeminal muscle spindle afferents during fictive mastication in the rabbit.
    Westberg KG; Kolta A; Clavelou P; Sandström G; Lund JP
    Eur J Neurosci; 2000 Apr; 12(4):1145-54. PubMed ID: 10762346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration in trigeminal premotor interneurones in the cat. 3. Input characteristics and synaptic actions of neurones in subnucleus-gamma of the oral nucleus of the spinal trigeminal tract with a projection to the masseteric motoneurone subnucleus.
    Westberg KG; Sandström G; Olsson KA
    Exp Brain Res; 1995; 104(3):449-61. PubMed ID: 7589296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats.
    Lo FS; Guido W; Erzurumlu RS
    J Neurophysiol; 1999 Nov; 82(5):2765-75. PubMed ID: 10561443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory neurons and motoneurons of the jaw-closing reflex pathway in rats: a combined morphological and physiological study using the intracellular horseradish peroxidase technique.
    Lingenhöhl K; Friauf E
    Exp Brain Res; 1991; 83(2):385-96. PubMed ID: 1708725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The infrared trigemino-tectal pathway in the rattlesnake and in the python.
    Newman EA; Gruberg ER; Hartline PH
    J Comp Neurol; 1980 Jun; 191(3):465-77. PubMed ID: 7410602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine structure and organization of the infrared receptor relays: lateral descending nucleus of V in Boidae and nucleus reticularis caloris in the rattlesnake.
    Meszler RM
    J Comp Neurol; 1983 Nov; 220(3):299-309. PubMed ID: 6643729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical regeneration and behavioral recovery following crush injury of the trigeminal root in lamprey.
    Calton JL; Philbrick K; McClellan AD
    J Comp Neurol; 1998 Jul; 396(3):322-37. PubMed ID: 9624587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature neurons in the crotaline trigeminal ganglia.
    Terashima S; Liang YF
    J Neurophysiol; 1991 Aug; 66(2):623-34. PubMed ID: 1774590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine structure and organization of the infrared receptor relay, the lateral descending nucleus of the trigeminal nerve in pit vipers.
    Meszler RM; Auker CR; Carpenter DO
    J Comp Neurol; 1981 Mar; 196(4):571-84. PubMed ID: 7204672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular records of the effects of primary afferent input in lumbar spinoreticular tract neurons in the cat.
    Sahara Y; Xie YK; Bennett GJ
    J Neurophysiol; 1990 Dec; 64(6):1791-800. PubMed ID: 2074464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intracellular study of time-dependent cardiovascular afferent interactions in nucleus tractus solitarius.
    Mifflin SW; Felder RB
    J Neurophysiol; 1988 Jun; 59(6):1798-813. PubMed ID: 3404205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trigeminal excitation of dorsal neck motoneurones in the cat.
    Alstermark B; Pinter MJ; Sasaki S; Tantisira B
    Exp Brain Res; 1992; 92(2):183-93. PubMed ID: 1493860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferent diversity and the organization of central vestibular pathways.
    Goldberg JM
    Exp Brain Res; 2000 Feb; 130(3):277-97. PubMed ID: 10706428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.