BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30037966)

  • 21. Fluctuating thermal regimes prevent chill injury but do not change patterns of oxidative stress in the alfalfa leafcutting bee, Megachile rotundata.
    Torson AS; Yocum GD; Rinehart JP; Nash SA; Bowsher JH
    J Insect Physiol; 2019 Oct; 118():103935. PubMed ID: 31472123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world.
    González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F
    Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effects of fluctuating thermal regime on cold tolerance of parasitoid wasp Aphidius gifuensis].
    Song XC; Cui NN; Zheng FQ; Mo TL; Liu TX; Xu YY
    Ying Yong Sheng Tai Xue Bao; 2012 Sep; 23(9):2515-20. PubMed ID: 23286010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod.
    van Dooremalen C; Suring W; Ellers J
    J Insect Physiol; 2011 Sep; 57(9):1267-73. PubMed ID: 21704631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal regulation of temperature tolerances and gene expression in an arctic insect.
    Noer NK; Nielsen KL; Sverrisdóttir E; Kristensen TN; Bahrndorff S
    J Exp Biol; 2023 Jun; 226(11):. PubMed ID: 37283090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing Fluctuating Thermal Regime Storage of Developing Megachile rotundata (Hymenoptera: Megachilidae).
    Rinehart JP; Yocum GD; Kemp WP; Bowsher JH
    J Econ Entomol; 2016 Mar; 109(3):993-1000. PubMed ID: 26994099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster.
    Koštál V; Korbelová J; Štětina T; Poupardin R; Colinet H; Zahradníčková H; Opekarová I; Moos M; Šimek P
    Sci Rep; 2016 Aug; 6():32346. PubMed ID: 27573891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome.
    MacMillan HA; Knee JM; Dennis AB; Udaka H; Marshall KE; Merritt TJ; Sinclair BJ
    Sci Rep; 2016 Jun; 6():28999. PubMed ID: 27357258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta.
    Noer NK; Pagter M; Bahrndorff S; Malmendal A; Kristensen TN
    PLoS One; 2020; 15(10):e0237201. PubMed ID: 33119606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Temperature and Wildflower Strips on Survival and Macronutrient Stores of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae) Under Extended Cold Storage.
    Park MG; Delphia CM; Prince C; Yocum GD; Rinehart JP; O'Neill KM; Burkle LA; Bowsher JH; Greenlee KJ
    Environ Entomol; 2022 Oct; 51(5):958-968. PubMed ID: 35964238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations.
    Lalouette L; Williams CM; Hervant F; Sinclair BJ; Renault D
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Feb; 158(2):229-34. PubMed ID: 21074633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.
    Sørensen JG; Schou MF; Kristensen TN; Loeschcke V
    Sci Rep; 2016 Aug; 6():30975. PubMed ID: 27487917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges.
    Sinclair BJ; Sørensen JG; Terblanche JS
    Bull Entomol Res; 2022 Aug; 112(4):441-450. PubMed ID: 35346401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms underlying insect freeze tolerance.
    Toxopeus J; Sinclair BJ
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1891-1914. PubMed ID: 29749114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects.
    Liu Y; Su H; Li R; Li X; Xu Y; Dai X; Zhou Y; Wang H
    BMC Genomics; 2017 Dec; 18(1):974. PubMed ID: 29258441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata.
    Torson AS; Yocum GD; Rinehart JP; Kemp WP; Bowsher JH
    J Exp Biol; 2015 Apr; 218(Pt 7):1060-8. PubMed ID: 25657206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How insects survive the cold: molecular mechanisms-a review.
    Clark MS; Worland MR
    J Comp Physiol B; 2008 Nov; 178(8):917-33. PubMed ID: 18584182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonconstant Thermal Regimes Enhance Overwintering Success and Accelerate Diapause Development for Smicronyx fulvus (Coleoptera: Curculionidae).
    Prasifka JR; Rinehart JP; Yocum GD
    J Econ Entomol; 2015 Aug; 108(4):1804-9. PubMed ID: 26470322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiology of cold tolerance in insects.
    Zachariassen KE
    Physiol Rev; 1985 Oct; 65(4):799-832. PubMed ID: 3903795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.