These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30038009)

  • 1. Constraints on Paleoproterozoic atmospheric oxygen levels.
    Bellefroid EJ; Hood AVS; Hoffman PF; Thomas MD; Reinhard CT; Planavsky NJ
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8104-8109. PubMed ID: 30038009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A persistently low level of atmospheric oxygen in Earth's middle age.
    Liu XM; Kah LC; Knoll AH; Cui H; Wang C; Bekker A; Hazen RM
    Nat Commun; 2021 Jan; 12(1):351. PubMed ID: 33441548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Mass-Independent Oxygen Isotope Fractionations in Mid-Proterozoic Sediments: Evidence for a Low-Oxygen Atmosphere?
    Planavsky NJ; Reinhard CT; Isson TT; Ozaki K; Crockford PW
    Astrobiology; 2020 May; 20(5):628-636. PubMed ID: 32228301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of iron and oxygen biogeochemical cycles during the Precambrian.
    Watanabe Y; Tajika E; Ozaki K
    Geobiology; 2023 Nov; 21(6):689-707. PubMed ID: 37622474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygenation of Earth's atmosphere induced metabolic and ecologic transformations recorded in the Lomagundi-Jatuli carbon isotopic excursion.
    Sumner DY
    Appl Environ Microbiol; 2024 Jun; 90(6):e0009324. PubMed ID: 38819147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
    Planavsky NJ; Reinhard CT; Wang X; Thomson D; McGoldrick P; Rainbird RH; Johnson T; Fischer WW; Lyons TW
    Science; 2014 Oct; 346(6209):635-8. PubMed ID: 25359975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-billion-year-old evaporites capture Earth's great oxidation.
    Blättler CL; Claire MW; Prave AR; Kirsimäe K; Higgins JA; Medvedev PV; Romashkin AE; Rychanchik DV; Zerkle AL; Paiste K; Kreitsmann T; Millar IL; Hayles JA; Bao H; Turchyn AV; Warke MR; Lepland A
    Science; 2018 Apr; 360(6386):320-323. PubMed ID: 29567810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance.
    Ozaki K; Reinhard CT; Tajika E
    Geobiology; 2019 Jan; 17(1):3-11. PubMed ID: 30281196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon.
    Daines SJ; Mills BJ; Lenton TM
    Nat Commun; 2017 Feb; 8():14379. PubMed ID: 28148950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere.
    Kah LC; Lyons TW; Frank TD
    Nature; 2004 Oct; 431(7010):834-8. PubMed ID: 15483609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple oxygen isotope constraints on atmospheric O
    Liu P; Liu J; Ji A; Reinhard CT; Planavsky NJ; Babikov D; Najjar RG; Kasting JF
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34911756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited role for methane in the mid-Proterozoic greenhouse.
    Olson SL; Reinhard CT; Lyons TW
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11447-11452. PubMed ID: 27671638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogeochemical transformations after the emergence of oxygenic photosynthesis and conditions for the first rise of atmospheric oxygen.
    Watanabe Y; Tajika E; Ozaki K
    Geobiology; 2023 Sep; 21(5):537-555. PubMed ID: 36960595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proterozoic supercontinent break-up as a driver for oxygenation events and subsequent carbon isotope excursions.
    Eguchi J; Diamond CW; Lyons TW
    PNAS Nexus; 2022 May; 1(2):pgac036. PubMed ID: 36713325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.
    Frei R; Gaucher C; Poulton SW; Canfield DE
    Nature; 2009 Sep; 461(7261):250-3. PubMed ID: 19741707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogenase Inhibition Limited Oxygenation of Earth's Proterozoic Atmosphere.
    Allen JF; Thake B; Martin WF
    Trends Plant Sci; 2019 Nov; 24(11):1022-1031. PubMed ID: 31447302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithostratigraphic analysis of a new stromatolite-thrombolite reef from across the rise of atmospheric oxygen in the Paleoproterozoic Turee Creek Group, Western Australia.
    Barlow E; Van Kranendonk MJ; Yamaguchi KE; Ikehara M; Lepland A
    Geobiology; 2016 Jul; 14(4):317-43. PubMed ID: 26928741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric oxygenation three billion years ago.
    Crowe SA; Døssing LN; Beukes NJ; Bau M; Kruger SJ; Frei R; Canfield DE
    Nature; 2013 Sep; 501(7468):535-8. PubMed ID: 24067713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term sedimentary recycling of rare sulphur isotope anomalies.
    Reinhard CT; Planavsky NJ; Lyons TW
    Nature; 2013 May; 497(7447):100-3. PubMed ID: 23615613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Earth's oxygen cycle and the evolution of animal life.
    Reinhard CT; Planavsky NJ; Olson SL; Lyons TW; Erwin DH
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):8933-8. PubMed ID: 27457943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.