These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30038016)
1. Switching of the folding-energy landscape governs the allosteric activation of protein kinase A. England JP; Hao Y; Bai L; Glick V; Hodges HC; Taylor SS; Maillard RA Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7478-E7485. PubMed ID: 30038016 [TBL] [Abstract][Full Text] [Related]
2. Activation of PKA via asymmetric allosteric coupling of structurally conserved cyclic nucleotide binding domains. Hao Y; England JP; Bellucci L; Paci E; Hodges HC; Taylor SS; Maillard RA Nat Commun; 2019 Sep; 10(1):3984. PubMed ID: 31484930 [TBL] [Abstract][Full Text] [Related]
3. Conformational changes in protein kinase A along its activation cycle are rooted in the folding energetics of cyclic-nucleotide binding domains. Chau AK; Bracken K; Bai L; Pham D; Good LL; Maillard RA J Biol Chem; 2023 Jun; 299(6):104790. PubMed ID: 37150322 [TBL] [Abstract][Full Text] [Related]
4. Using Optical Tweezers to Monitor Allosteric Signals Through Changes in Folding Energy Landscapes. Bai L; Malmosi M; Good L; Maillard RA Methods Mol Biol; 2022; 2478():483-510. PubMed ID: 36063332 [TBL] [Abstract][Full Text] [Related]
5. Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα. Akimoto M; McNicholl ET; Ramkissoon A; Moleschi K; Taylor SS; Melacini G PLoS Biol; 2015; 13(11):e1002305. PubMed ID: 26618408 [TBL] [Abstract][Full Text] [Related]
6. Unidirectional allostery in the regulatory subunit RIα facilitates efficient deactivation of protein kinase A. Guo C; Zhou HX Proc Natl Acad Sci U S A; 2016 Nov; 113(44):E6776-E6785. PubMed ID: 27791125 [TBL] [Abstract][Full Text] [Related]
7. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states. Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384 [TBL] [Abstract][Full Text] [Related]
8. Definition of an electrostatic relay switch critical for the cAMP-dependent activation of protein kinase A as revealed by the D170A mutant of RIalpha. Abu-Abed M; Das R; Wang L; Melacini G Proteins; 2007 Oct; 69(1):112-24. PubMed ID: 17596845 [TBL] [Abstract][Full Text] [Related]
9. The αC-β4 loop controls the allosteric cooperativity between nucleotide and substrate in the catalytic subunit of protein kinase A. Olivieri C; Wang Y; Walker C; Subrahmanian MV; Ha KN; Bernlohr D; Gao J; Camilloni C; Vendruscolo M; Taylor SS; Veglia G Elife; 2024 Jun; 12():. PubMed ID: 38913408 [TBL] [Abstract][Full Text] [Related]
10. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Kim C; Cheng CY; Saldanha SA; Taylor SS Cell; 2007 Sep; 130(6):1032-43. PubMed ID: 17889648 [TBL] [Abstract][Full Text] [Related]
11. Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Taylor SS; Kim C; Cheng CY; Brown SH; Wu J; Kannan N Biochim Biophys Acta; 2008 Jan; 1784(1):16-26. PubMed ID: 17996741 [TBL] [Abstract][Full Text] [Related]
12. A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP. Vigil D; Lin JH; Sotriffer CA; Pennypacker JK; McCammon JA; Taylor SS Protein Sci; 2006 Jan; 15(1):113-21. PubMed ID: 16322564 [TBL] [Abstract][Full Text] [Related]
13. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains. He D; Lorenz R; Kim C; Herberg FW; Lim CJ ACS Chem Biol; 2017 Dec; 12(12):3057-3066. PubMed ID: 29111666 [TBL] [Abstract][Full Text] [Related]
14. cAMP activation of PKA defines an ancient signaling mechanism. Das R; Esposito V; Abu-Abed M; Anand GS; Taylor SS; Melacini G Proc Natl Acad Sci U S A; 2007 Jan; 104(1):93-8. PubMed ID: 17182741 [TBL] [Abstract][Full Text] [Related]
15. RIalpha subunit of PKA: a cAMP-free structure reveals a hydrophobic capping mechanism for docking cAMP into site B. Wu J; Brown S; Xuong NH; Taylor SS Structure; 2004 Jun; 12(6):1057-65. PubMed ID: 15274925 [TBL] [Abstract][Full Text] [Related]
16. Dissecting interdomain communication within cAPK regulatory subunit type IIbeta using enhanced amide hydrogen/deuterium exchange mass spectrometry (DXMS). Zawadzki KM; Hamuro Y; Kim JS; Garrod S; Stranz DD; Taylor SS; Woods VL Protein Sci; 2003 Sep; 12(9):1980-90. PubMed ID: 12930997 [TBL] [Abstract][Full Text] [Related]
17. cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. Lorenz R; Bertinetti D; Herberg FW Handb Exp Pharmacol; 2017; 238():105-122. PubMed ID: 27885524 [TBL] [Abstract][Full Text] [Related]
18. A historical overview of protein kinases and their targeted small molecule inhibitors. Roskoski R Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888 [TBL] [Abstract][Full Text] [Related]
19. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Yu S; Mei FC; Lee JC; Cheng X Biochemistry; 2004 Feb; 43(7):1908-20. PubMed ID: 14967031 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics simulation studies on the positive cooperativity of the Kemptide substrate with protein kinase A induced by the ATP ligand. Li C; Ma N; Wang Y; Wang Y; Chen G J Phys Chem B; 2014 Feb; 118(5):1273-87. PubMed ID: 24456306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]