These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 30038279)

  • 1. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation.
    Campbell MG; Ocko SA; Mallory CS; Low IIC; Ganguli S; Giocomo LM
    Nat Neurosci; 2018 Aug; 21(8):1096-1106. PubMed ID: 30038279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
    Chen G; King JA; Lu Y; Cacucci F; Burgess N
    Elife; 2018 Jun; 7():. PubMed ID: 29911974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality.
    Kinkhabwala AA; Gu Y; Aronov D; Tank DW
    Elife; 2020 Mar; 9():. PubMed ID: 32149601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling place cells and grid cells in multi-compartment environments: Entorhinal-hippocampal loop as a multisensory integration circuit.
    Li T; Arleo A; Sheynikhovich D
    Neural Netw; 2020 Jan; 121():37-51. PubMed ID: 31526953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental boundaries as a mechanism for correcting and anchoring spatial maps.
    Giocomo LM
    J Physiol; 2016 Nov; 594(22):6501-6511. PubMed ID: 26563618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual boundary cues suffice to anchor place and grid cells in virtual reality.
    Yang X; Cacucci F; Burgess N; Wills TJ; Chen G
    Curr Biol; 2024 May; 34(10):2256-2264.e3. PubMed ID: 38701787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames.
    Meister MLR; Buffalo EA
    J Neurosci; 2018 Mar; 38(10):2430-2441. PubMed ID: 29386260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals.
    Mallory CS; Hardcastle K; Campbell MG; Attinger A; Low IIC; Raymond JL; Giocomo LM
    Nat Commun; 2021 Jan; 12(1):671. PubMed ID: 33510164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vision and Locomotion Combine to Drive Path Integration Sequences in Mouse Retrosplenial Cortex.
    Mao D; Molina LA; Bonin V; McNaughton BL
    Curr Biol; 2020 May; 30(9):1680-1688.e4. PubMed ID: 32197086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Object-vector coding in the medial entorhinal cortex.
    Høydal ØA; Skytøen ER; Andersson SO; Moser MB; Moser EI
    Nature; 2019 Apr; 568(7752):400-404. PubMed ID: 30944479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Representation of Landmark and Self-Motion Information along the CA1 Radial Axis: Self-Motion Generated Place Fields Shift toward Landmarks during Septal Inactivation.
    Fattahi M; Sharif F; Geiller T; Royer S
    J Neurosci; 2018 Jul; 38(30):6766-6778. PubMed ID: 29954846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of boundary removal on the spatial representations of the medial entorhinal cortex.
    Savelli F; Yoganarasimha D; Knierim JJ
    Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex.
    Pérez-Escobar JA; Kornienko O; Latuske P; Kohler L; Allen K
    Elife; 2016 Jul; 5():. PubMed ID: 27449281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ageing effects on path integration and landmark navigation.
    Harris MA; Wolbers T
    Hippocampus; 2012 Aug; 22(8):1770-80. PubMed ID: 22431367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure of a spatial map in the entorhinal cortex.
    Hafting T; Fyhn M; Molden S; Moser MB; Moser EI
    Nature; 2005 Aug; 436(7052):801-6. PubMed ID: 15965463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.
    Chen G; Manson D; Cacucci F; Wills TJ
    Curr Biol; 2016 Sep; 26(17):2335-42. PubMed ID: 27498565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of visual landmarks in retrosplenial cortex.
    Fischer LF; Mojica Soto-Albors R; Buck F; Harnett MT
    Elife; 2020 Mar; 9():. PubMed ID: 32154781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent elasticity in the neural code for space.
    Ocko SA; Hardcastle K; Giocomo LM; Ganguli S
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11798-E11806. PubMed ID: 30482856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repetition Suppression Reveals Cue-Specific Spatial Representations for Landmarks and Self-Motion Cues in the Human Retrosplenial Cortex.
    Chen X; Wei Z; Wolbers T
    eNeuro; 2024 Apr; 11(4):. PubMed ID: 38519127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias in Human Path Integration Is Predicted by Properties of Grid Cells.
    Chen X; He Q; Kelly JW; Fiete IR; McNamara TP
    Curr Biol; 2015 Jun; 25(13):1771-6. PubMed ID: 26073138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.