These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30038400)

  • 1. Middle Eocene greenhouse warming facilitated by diminished weathering feedback.
    van der Ploeg R; Selby D; Cramwinckel MJ; Li Y; Bohaty SM; Middelburg JJ; Sluijs A
    Nat Commun; 2018 Jul; 9(1):2877. PubMed ID: 30038400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum.
    Krause AJ; Sluijs A; van der Ploeg R; Lenton TM; Pogge von Strandmann PAE
    Nat Geosci; 2023; 16(8):730-738. PubMed ID: 37564379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Cenozoic Decoupling of Climate and Carbonate Compensation Depth Trends.
    Greene SE; Ridgwell A; Kirtland Turner S; Schmidt DN; Pälike H; Thomas E; Greene LK; Hoogakker BAA
    Paleoceanogr Paleoclimatol; 2019 Jun; 34(6):930-945. PubMed ID: 31598585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.
    Sexton PF; Norris RD; Wilson PA; Pälike H; Westerhold T; Röhl U; Bolton CT; Gibbs S
    Nature; 2011 Mar; 471(7338):349-52. PubMed ID: 21412336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cenozoic record of the equatorial Pacific carbonate compensation depth.
    Pälike H; Lyle MW; Nishi H; Raffi I; Ridgwell A; Gamage K; Klaus A; Acton G; Anderson L; Backman J; Baldauf J; Beltran C; Bohaty SM; Bown P; Busch W; Channell JE; Chun CO; Delaney M; Dewangan P; Dunkley Jones T; Edgar KM; Evans H; Fitch P; Foster GL; Gussone N; Hasegawa H; Hathorne EC; Hayashi H; Herrle JO; Holbourn A; Hovan S; Hyeong K; Iijima K; Ito T; Kamikuri S; Kimoto K; Kuroda J; Leon-Rodriguez L; Malinverno A; Moore TC; Murphy BH; Murphy DP; Nakamura H; Ogane K; Ohneiser C; Richter C; Robinson R; Rohling EJ; Romero O; Sawada K; Scher H; Schneider L; Sluijs A; Takata H; Tian J; Tsujimoto A; Wade BS; Westerhold T; Wilkens R; Williams T; Wilson PA; Yamamoto Y; Yamamoto S; Yamazaki T; Zeebe RE
    Nature; 2012 Aug; 488(7413):609-14. PubMed ID: 22932385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse weathering as a long-term stabilizer of marine pH and planetary climate.
    Isson TT; Planavsky NJ
    Nature; 2018 Aug; 560(7719):471-475. PubMed ID: 30089907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of mid Eocene greenhouse warming on America's southernmost floras.
    Fernández DA; Palazzesi L; González Estebenet MS; Tellería MC; Barreda VD
    Commun Biol; 2021 Feb; 4(1):176. PubMed ID: 33564110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The supercontinent cycle and Earth's long-term climate.
    Nance RD
    Ann N Y Acad Sci; 2022 Sep; 1515(1):33-49. PubMed ID: 35762733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
    Anagnostou E; John EH; Edgar KM; Foster GL; Ridgwell A; Inglis GN; Pancost RD; Lunt DJ; Pearson PN
    Nature; 2016 May; 533(7603):380-4. PubMed ID: 27111509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eocene bipolar glaciation associated with global carbon cycle changes.
    Tripati A; Backman J; Elderfield H; Ferretti P
    Nature; 2005 Jul; 436(7049):341-6. PubMed ID: 16034408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales.
    Torres MA; West AJ; Li G
    Nature; 2014 Mar; 507(7492):346-9. PubMed ID: 24646998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 40-million-year history of atmospheric CO(2).
    Zhang YG; Pagani M; Liu Z; Bohaty SM; Deconto R
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2001):20130096. PubMed ID: 24043869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrologic regulation of chemical weathering and the geologic carbon cycle.
    Maher K; Chamberlain CP
    Science; 2014 Mar; 343(6178):1502-4. PubMed ID: 24625927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neoproterozoic syn-glacial carbonate precipitation and implications for a snowball Earth.
    Hood AVS; Penman DE; Lechte MA; Wallace MW; Giddings JA; Planavsky NJ
    Geobiology; 2022 Mar; 20(2):175-193. PubMed ID: 34528380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum.
    Giorgioni M; Jovane L; Rego ES; Rodelli D; Frontalini F; Coccioni R; Catanzariti R; Özcan E
    Sci Rep; 2019 Jun; 9(1):9357. PubMed ID: 31249387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.
    Jenkyns HC
    Philos Trans A Math Phys Eng Sci; 2003 Sep; 361(1810):1885-916; discussion 1916. PubMed ID: 14558900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event.
    Them TR; Gill BC; Selby D; Gröcke DR; Friedman RM; Owens JD
    Sci Rep; 2017 Jul; 7(1):5003. PubMed ID: 28694487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neogene continental denudation and the beryllium conundrum.
    Li S李; Goldstein SL; Raymo ME
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34649990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eocene (50-55 Ma) greenhouse climate recorded in nonmarine rocks of San Diego, CA, USA.
    Broz AP; Pritchard-Peterson D; Spinola D; Schneider S; Retallack G; Silva LCR
    Sci Rep; 2024 Jan; 14(1):2613. PubMed ID: 38297060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.
    Zeebe RE
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13739-44. PubMed ID: 23918402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.