These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30039367)

  • 1. Detecting Small Inversions Using SRinversion.
    Chen R; Lau YL; Yang W
    Methods Mol Biol; 2018; 1833():107-114. PubMed ID: 30039367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SRinversion: a tool for detecting short inversions by splitting and re-aligning poorly mapped and unmapped sequencing reads.
    Chen R; Lau YL; Zhang Y; Yang W
    Bioinformatics; 2016 Dec; 32(23):3559-3565. PubMed ID: 27503227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining.
    Wu Z; Wu Y; Gao J
    BMC Genomics; 2020 Mar; 21(Suppl 1):173. PubMed ID: 32138660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Applications of Next-Generation Sequencing in Cancer Diagnosis.
    Sabour L; Sabour M; Ghorbian S
    Pathol Oncol Res; 2017 Apr; 23(2):225-234. PubMed ID: 27722982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches.
    Abel HJ; Duncavage EJ
    Cancer Genet; 2013 Dec; 206(12):432-40. PubMed ID: 24405614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms.
    Bartenhagen C; Dugas M
    Brief Bioinform; 2016 Jan; 17(1):51-62. PubMed ID: 25998133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of the next-generation sequencing approach for molecular diagnosis of hereditary hearing loss.
    Sivakumaran TA; Husami A; Kissell D; Zhang W; Keddache M; Black AP; Tinkle BT; Greinwald JH; Zhang K
    Otolaryngol Head Neck Surg; 2013 Jun; 148(6):1007-16. PubMed ID: 23525850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying micro-inversions using high-throughput sequencing reads.
    He F; Li Y; Tang YH; Ma J; Zhu H
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From trash to treasure: detecting unexpected contamination in unmapped NGS data.
    Sangiovanni M; Granata I; Thind AS; Guarracino MR
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):168. PubMed ID: 30999839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
    Trappe K; Emde AK; Ehrlich HC; Reinert K
    Bioinformatics; 2014 Dec; 30(24):3484-90. PubMed ID: 25028727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphic edge detection (PED): two efficient methods of polymorphism detection from next-generation sequencing data.
    Miyao A; Kiyomiya JS; Iida K; Doi K; Yasue H
    BMC Bioinformatics; 2019 Jun; 20(1):362. PubMed ID: 31253084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize.
    Fritsch L; Fischer R; Wambach C; Dudek M; Schillberg S; Schröper F
    Transgenic Res; 2015 Aug; 24(4):615-23. PubMed ID: 25648956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-generation sequencing as a tool for breakpoint analysis in rearrangements of the globin gene clusters.
    Clark BE; Shooter C; Smith F; Brawand D; Thein SL
    Int J Lab Hematol; 2017 May; 39 Suppl 1():111-120. PubMed ID: 28447426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaObtainer: A Tool for Obtaining Specified Species from Metagenomic Reads of Next-generation Sequencing.
    Pan W; Chen B; Xu Y
    Interdiscip Sci; 2015 Dec; 7(4):405-13. PubMed ID: 26293485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Mitochondrial Genome Analysis by Massively Parallel Sequencing.
    Palculict ME; Zhang VW; Wong LJ; Wang J
    Methods Mol Biol; 2016; 1351():3-17. PubMed ID: 26530670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical application of amplicon-based next-generation sequencing in cancer.
    Chang F; Li MM
    Cancer Genet; 2013 Dec; 206(12):413-9. PubMed ID: 24332266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rare Event Detection Using Error-corrected DNA and RNA Sequencing.
    Wong WH; Tong RS; Young AL; Druley TE
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis.
    Barseghyan H; Tang W; Wang RT; Almalvez M; Segura E; Bramble MS; Lipson A; Douine ED; Lee H; Délot EC; Nelson SF; Vilain E
    Genome Med; 2017 Oct; 9(1):90. PubMed ID: 29070057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence.
    Bian J; Zhou X
    Methods Mol Biol; 2017; 1552():123-133. PubMed ID: 28224495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of high throughput sequencing in pediatric neurooncology].
    Okonechnikov KV; Ryzhova MV; Galstyan SA; Telysheva EN
    Arkh Patol; 2022; 84(2):58-63. PubMed ID: 35417950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.