These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30039519)

  • 1. Enhanced thalamo-hippocampal synchronization during focal limbic seizures.
    Aracri P; de Curtis M; Forcaia G; Uva L
    Epilepsia; 2018 Sep; 59(9):1774-1784. PubMed ID: 30039519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronous inhibitory potentials precede seizure-like events in acute models of focal limbic seizures.
    Uva L; Breschi GL; Gnatkovsky V; Taverna S; de Curtis M
    J Neurosci; 2015 Feb; 35(7):3048-55. PubMed ID: 25698742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the Thalamo-Cortical Synchrony Play a Role in Seizure Termination?
    Evangelista E; Bénar C; Bonini F; Carron R; Colombet B; Régis J; Bartolomei F
    Front Neurol; 2015; 6():192. PubMed ID: 26388834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The midline thalamus: alterations and a potential role in limbic epilepsy.
    Bertram EH; Mangan PS; Zhang D; Scott CA; Williamson JM
    Epilepsia; 2001 Aug; 42(8):967-78. PubMed ID: 11554881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network dynamics during the progression of seizure-like events in the hippocampal-parahippocampal regions.
    Boido D; Jesuthasan N; de Curtis M; Uva L
    Cereb Cortex; 2014 Jan; 24(1):163-73. PubMed ID: 23048021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of GABAergic Interneuron Subtypes in 4-Aminopyridine-Induced Seizure-Like Events in Mouse Entorhinal Cortex
    Scalmani P; Paterra R; Mantegazza M; Avoli M; de Curtis M
    J Neurosci; 2023 Mar; 43(11):1987-2001. PubMed ID: 36810229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro.
    Gnatkovsky V; Librizzi L; Trombin F; de Curtis M
    Ann Neurol; 2008 Dec; 64(6):674-86. PubMed ID: 19107991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel pathways to decreased subcortical arousal in focal limbic seizures.
    Zhao CW; Feng L; Sieu LA; Pok B; Gummadavelli A; Blumenfeld H
    Epilepsia; 2020 Dec; 61(12):e186-e191. PubMed ID: 33165921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical deactivation induced by subcortical network dysfunction in limbic seizures.
    Englot DJ; Modi B; Mishra AM; DeSalvo M; Hyder F; Blumenfeld H
    J Neurosci; 2009 Oct; 29(41):13006-18. PubMed ID: 19828814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity- and pH-dependent adenosine shifts at the end of a focal seizure in the entorhinal cortex.
    Uva L; de Curtis M
    Epilepsy Res; 2020 Sep; 165():106401. PubMed ID: 32599416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limbic and olfactory cortical circuits in focal seizures.
    de Curtis M; Librizzi L; Uva L
    Neurobiol Dis; 2023 Mar; 178():106007. PubMed ID: 36682502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus.
    Derchansky M; Shahar E; Wennberg RA; Samoilova M; Jahromi SS; Abdelmalik PA; Zhang L; Carlen PL
    Hippocampus; 2004; 14(8):935-47. PubMed ID: 15390177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat subicular networks gate hippocampal output activity in an in vitro model of limbic seizures.
    Benini R; Avoli M
    J Physiol; 2005 Aug; 566(Pt 3):885-900. PubMed ID: 15932889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in action potential features during focal seizure discharges in the entorhinal cortex of the in vitro isolated guinea pig brain.
    Trombin F; Gnatkovsky V; de Curtis M
    J Neurophysiol; 2011 Sep; 106(3):1411-23. PubMed ID: 21676935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifocal spontaneous epileptic activity induced by restricted bicuculline ejection in the piriform cortex of the isolated guinea pig brain.
    De Curtis M; Biella G; Forti M; Panzica F
    J Neurophysiol; 1994 Jun; 71(6):2463-76. PubMed ID: 7931528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Typical versus atypical absence seizures: network mechanisms of the spread of paroxysms.
    Velazquez JL; Huo JZ; Dominguez LG; Leshchenko Y; Snead OC
    Epilepsia; 2007 Aug; 48(8):1585-93. PubMed ID: 17484751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seizure-like discharges induced by 4-aminopyridine in the olfactory system of the in vitro isolated guinea pig brain.
    Uva L; Trombin F; Carriero G; Avoli M; de Curtis M
    Epilepsia; 2013 Apr; 54(4):605-15. PubMed ID: 23505998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitatory amplification through divergent-convergent circuits: the role of the midline thalamus in limbic seizures.
    Sloan DM; Zhang D; Bertram EH
    Neurobiol Dis; 2011 Aug; 43(2):435-45. PubMed ID: 21554957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desynchronisation of spontaneously recurrent experimental seizures proceeds with a single rhythm.
    Nyikos L; Lasztóczi B; Antal K; Kovács R; Kardos J
    Neuroscience; 2003; 121(3):705-17. PubMed ID: 14568030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.