BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30039566)

  • 1. The influence of multiple functional demands on morphological diversification: A test on turtle shells.
    Stayton CT; O'Connor LF; Nisivoccia NM
    Evolution; 2018 Sep; 72(9):1933-1949. PubMed ID: 30039566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance in three shell functions predicts the phenotypic distribution of hard-shelled turtles.
    Stayton CT
    Evolution; 2019 Apr; 73(4):720-734. PubMed ID: 30820948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Surface Analysis Identifies Consistent Functional Patterns across 10 Morphologically Divergent Terrestrial Turtle Lineages.
    Stayton CT
    Integr Comp Biol; 2019 Aug; 59(2):346-357. PubMed ID: 31187125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of shell shape in the freshwater turtle Pseudemys concinna reveals a trade-off between mechanical strength and hydrodynamic efficiency.
    Rivera G; Stayton CT
    J Morphol; 2011 Oct; 272(10):1192-203. PubMed ID: 21630321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics on the half shell: functional performance influences patterns of morphological variation in the emydid turtle carapace.
    Stayton CT
    Zoology (Jena); 2011 Sep; 114(4):213-23. PubMed ID: 21820295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shell shape does not accurately predict self-righting ability in hatchling freshwater turtles.
    van Casteren A; Sellers WI; Crossley DA; Costello LM; Codd JR
    Sci Rep; 2024 Feb; 14(1):4919. PubMed ID: 38418502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphogenetic and constructional differences of the carapace of aquatic and terrestrial turtles and their evolutionary significance.
    Cherepanov G
    J Morphol; 2019 Oct; 280(10):1571-1581. PubMed ID: 31411770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing for evolutionary trade-offs in a phylogenetic context: ecological diversification and evolution of locomotor performance in emydid turtles.
    Stephens PR; Wiens JJ
    J Evol Biol; 2008 Jan; 21(1):77-87. PubMed ID: 18034805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The integumental appendages of the turtle shell: an evo-devo perspective.
    Moustakas-Verho JE; Cherepanov GO
    J Exp Zool B Mol Dev Evol; 2015 May; 324(3):221-9. PubMed ID: 25877335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed trait development and the convergent evolution of shell kinesis in turtles.
    Cordero GA; Quinteros K; Janzen FJ
    Proc Biol Sci; 2018 Oct; 285(1888):. PubMed ID: 30282655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and mechanical changes in juvenile red-eared slider turtle (Trachemys scripta elegans) shells during ontogeny.
    Fish JF; Stayton CT
    J Morphol; 2014 Apr; 275(4):391-7. PubMed ID: 24301373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.
    Pascual-Anaya J; Hirasawa T; Sato I; Kuraku S; Kuratani S
    Int J Dev Biol; 2014; 58(10-12):743-50. PubMed ID: 26154315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microanatomy of the stem-turtle Pappochelys rosinae indicates a predominantly fossorial mode of life and clarifies early steps in the evolution of the shell.
    Schoch RR; Klein N; Scheyer TM; Sues HD
    Sci Rep; 2019 Jul; 9(1):10430. PubMed ID: 31320733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The endoskeletal origin of the turtle carapace.
    Hirasawa T; Nagashima H; Kuratani S
    Nat Commun; 2013; 4():2107. PubMed ID: 23836118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging from the rib: resolving the turtle controversies.
    Rice R; Riccio P; Gilbert SF; Cebra-Thomas J
    J Exp Zool B Mol Dev Evol; 2015 May; 324(3):208-20. PubMed ID: 25675951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary origin of the turtle shell.
    Lyson TR; Bever GS; Scheyer TM; Hsiang AY; Gauthier JA
    Curr Biol; 2013 Jun; 23(12):1113-9. PubMed ID: 23727095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional performance of turtle humerus shape across an ecological adaptive landscape.
    Dickson BV; Pierce SE
    Evolution; 2019 Jun; 73(6):1265-1277. PubMed ID: 31008517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning of the turtle shell.
    Moustakas-Verho JE; Cebra-Thomas J; Gilbert SF
    Curr Opin Genet Dev; 2017 Aug; 45():124-131. PubMed ID: 28570929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin and loss of periodic patterning in the turtle shell.
    Moustakas-Verho JE; Zimm R; Cebra-Thomas J; Lempiäinen NK; Kallonen A; Mitchell KL; Hämäläinen K; Salazar-Ciudad I; Jernvall J; Gilbert SF
    Development; 2014 Aug; 141(15):3033-9. PubMed ID: 25053434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of asymmetry on the strength of the chelonian shell: a comparison of three species.
    Rivera G; Stayton CT
    J Morphol; 2013 Aug; 274(8):901-8. PubMed ID: 23630125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.