These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 30039698)
1. Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene. Tanwar AS; Adil LR; Afroz MA; Iyer PK ACS Sens; 2018 Aug; 3(8):1451-1461. PubMed ID: 30039698 [TBL] [Abstract][Full Text] [Related]
2. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. Malik AH; Hussain S; Kalita A; Iyer PK ACS Appl Mater Interfaces; 2015 Dec; 7(48):26968-76. PubMed ID: 26580229 [TBL] [Abstract][Full Text] [Related]
3. "Receptor free" inner filter effect based universal sensors for nitroexplosive picric acid using two polyfluorene derivatives in the solution and solid states. Tanwar AS; Patidar S; Ahirwar S; Dehingia S; Iyer PK Analyst; 2019 Jan; 144(2):669-676. PubMed ID: 30511061 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence "Turn-On" Indicator Displacement Assay-Based Sensing of Nitroexplosive 2,4,6-Trinitrophenol in Aqueous Media via a Polyelectrolyte and Dye Complex. Tanwar AS; Iyer PK ACS Omega; 2017 Aug; 2(8):4424-4430. PubMed ID: 31457734 [TBL] [Abstract][Full Text] [Related]
5. Solvent-assisted optical modulation of FRET-induced fluorescence for efficient conjugated polymer-based DNA detection. Kang M; Nag OK; Hwang S; Kim I; Yang H; Kyhm K; Woo HY Phys Chem Chem Phys; 2010 Dec; 12(47):15482-9. PubMed ID: 20976320 [TBL] [Abstract][Full Text] [Related]
6. Preparation, Single-Molecule Manipulation, and Energy Transfer Investigation of a Polyfluorene-graft-DNA polymer. Madsen M; Christensen RS; Krissanaprasit A; Bakke MR; Riber CF; Nielsen KS; Zelikin AN; Gothelf KV Chemistry; 2017 Aug; 23(44):10511-10515. PubMed ID: 28640936 [TBL] [Abstract][Full Text] [Related]
7. Receptor-Free Detection of Picric Acid: A New Structural Approach for Designing Aggregation-Induced Emission Probes. Adil LR; Gopikrishna P; Krishnan Iyer P ACS Appl Mater Interfaces; 2018 Aug; 10(32):27260-27268. PubMed ID: 30022660 [TBL] [Abstract][Full Text] [Related]
8. Aggregation-directed High Fidelity Sensing of Picric Acid by a Perylenediimide-based Luminogen. Pramanik B; Das S; Das D Chem Asian J; 2020 Dec; 15(24):4291-4296. PubMed ID: 33137228 [TBL] [Abstract][Full Text] [Related]
9. Development of A Thermo-Responsive Conjugated Polymer with Photobleaching-Resistance Property and Tunable Photosensitizing Performance. Xu Q; Lv F; Liu L; Wang S Macromol Rapid Commun; 2020 Aug; 41(15):e2000249. PubMed ID: 32608545 [TBL] [Abstract][Full Text] [Related]
10. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins. Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000 [TBL] [Abstract][Full Text] [Related]
11. Anion-Exchange Induced Strong π-π Interactions in Single Crystalline Naphthalene Diimide for Nitroexplosive Sensing: An Electronic Prototype for Visual on-Site Detection. Kalita A; Hussain S; Malik AH; Barman U; Goswami N; Iyer PK ACS Appl Mater Interfaces; 2016 Sep; 8(38):25326-36. PubMed ID: 27589572 [TBL] [Abstract][Full Text] [Related]
12. Ratiometric fluorescent ion detection in water with high sensitivity via aggregation-mediated fluorescence resonance energy transfer using a conjugated polyelectrolyte as an optical platform. Le VS; Kim B; Lee W; Jeong JE; Yang R; Woo HY Macromol Rapid Commun; 2013 May; 34(9):772-8. PubMed ID: 23417971 [TBL] [Abstract][Full Text] [Related]
13. Fluorescent sensor based on a novel conjugated polyfluorene derivative. Gao W; Yan M; Ge S; Liu X; Yu J Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():218-23. PubMed ID: 22634413 [TBL] [Abstract][Full Text] [Related]
14. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium. Liu SG; Luo D; Li N; Zhang W; Lei JL; Li NB; Luo HQ ACS Appl Mater Interfaces; 2016 Aug; 8(33):21700-9. PubMed ID: 27471907 [TBL] [Abstract][Full Text] [Related]
15. Dual-state emission difluoroboron derivatives for selective detection of picric acid and reversible acid/base fluorescence switching. Ni Y; Zhang S; He X; Huang J; Kong L; Yang J; Yang J Anal Methods; 2021 Jul; 13(25):2830-2835. PubMed ID: 34079969 [TBL] [Abstract][Full Text] [Related]
19. Conjugated microporous polymers-based fluorescein for fluorescence detection of 2,4,6-trinitrophenol. Geng TM; Ye SN; Wang Y; Zhu H; Wang X; Liu X Talanta; 2017 Apr; 165():282-288. PubMed ID: 28153255 [TBL] [Abstract][Full Text] [Related]
20. Amphiphilic gemini-iridium (III) complex for rapid and selective detection of picric acid in water and intracellular. Yi S; Lu Z; Xie Z; Hou L Talanta; 2020 Feb; 208():120372. PubMed ID: 31816688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]