These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30039896)

  • 21. Stochastic scanning events on the GCN4 mRNA 5' untranslated region generate cell-to-cell heterogeneity in the yeast nutritional stress response.
    Meng X; Reed A; Lai S; Szavits-Nossan J; McCarthy JEG
    Nucleic Acids Res; 2023 Jul; 51(13):6609-6621. PubMed ID: 37246646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chemical genomics study identifies Snf1 as a repressor of GCN4 translation.
    Shirra MK; McCartney RR; Zhang C; Shokat KM; Schmidt MC; Arndt KM
    J Biol Chem; 2008 Dec; 283(51):35889-98. PubMed ID: 18955495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase.
    Zaman Z; Bowman SB; Kornfeld GD; Brown AJ; Dawes IW
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):855-62. PubMed ID: 10359673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function.
    Hannig EM; Hinnebusch AG
    Mol Cell Biol; 1988 Nov; 8(11):4808-20. PubMed ID: 3062370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yeast response and tolerance to benzoic acid involves the Gcn4- and Stp1-regulated multidrug/multixenobiotic resistance transporter Tpo1.
    Godinho CP; Mira NP; Cabrito TR; Teixeira MC; Alasoo K; Guerreiro JF; Sá-Correia I
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5005-5018. PubMed ID: 28409382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program.
    Srinivasan R; Walvekar AS; Rashida Z; Seshasayee A; Laxman S
    PLoS Genet; 2020 Dec; 16(12):e1009252. PubMed ID: 33378328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae.
    Abastado JP; Miller PF; Hinnebusch AG
    New Biol; 1991 May; 3(5):511-24. PubMed ID: 1883814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation.
    Martín-Marcos P; Hinnebusch AG; Tamame M
    Mol Cell Biol; 2007 Sep; 27(17):5968-85. PubMed ID: 17548477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program.
    Walvekar AS; Kadamur G; Sreedharan S; Gupta R; Srinivasan R; Laxman S
    J Biol Chem; 2020 Dec; 295(52):18390-18405. PubMed ID: 33122193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sumoylation controls the timing of Tup1-mediated transcriptional deactivation.
    Ng CH; Akhter A; Yurko N; Burgener JM; Rosonina E; Manley JL
    Nat Commun; 2015 Mar; 6():6610. PubMed ID: 25766875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional profiling of cross pathway control in Neurospora crassa and comparative analysis of the Gcn4 and CPC1 regulons.
    Tian C; Kasuga T; Sachs MS; Glass NL
    Eukaryot Cell; 2007 Jun; 6(6):1018-29. PubMed ID: 17449655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of Saccharomyces cerevisiae transcription factor Gcn4 requires a C-terminal nuclear localization signal in the cyclin Pcl5.
    Streckfuss-Bömeke K; Schulze F; Herzog B; Scholz E; Braus GH
    Eukaryot Cell; 2009 Apr; 8(4):496-510. PubMed ID: 19218424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of translational control of eukaryotic gene expression using yeast.
    Hinnebusch AG; Asano K; Olsen DS; Phan L; Nielsen KH; Valásek L
    Ann N Y Acad Sci; 2004 Dec; 1038():60-74. PubMed ID: 15838098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains.
    Herbig E; Warfield L; Fish L; Fishburn J; Knutson BA; Moorefield B; Pacheco D; Hahn S
    Mol Cell Biol; 2010 May; 30(10):2376-90. PubMed ID: 20308326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A putative stimulatory role for activator turnover in gene expression.
    Lipford JR; Smith GT; Chi Y; Deshaies RJ
    Nature; 2005 Nov; 438(7064):113-6. PubMed ID: 16267558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nup100 regulates
    Lord CL; Ospovat O; Wente SR
    RNA; 2017 Mar; 23(3):365-377. PubMed ID: 27932586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Truncated variants of the GCN4 transcription activator protein bind DNA with dramatically different dynamical motifs.
    McHarris DM; Barr DA
    J Chem Inf Model; 2014 Oct; 54(10):2869-75. PubMed ID: 25204850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2.
    Hinnebusch AG
    Mol Microbiol; 1993 Oct; 10(2):215-23. PubMed ID: 7934812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo.
    Jedidi I; Zhang F; Qiu H; Stahl SJ; Palmer I; Kaufman JD; Nadaud PS; Mukherjee S; Wingfield PT; Jaroniec CP; Hinnebusch AG
    J Biol Chem; 2010 Jan; 285(4):2438-55. PubMed ID: 19940160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha.
    Nomura W; Maeta K; Kita K; Izawa S; Inoue Y
    Biochem Biophys Res Commun; 2008 Nov; 376(4):738-42. PubMed ID: 18812164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.