These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30039965)

  • 1. Radio Frequency Heating of Carbon Nanotube Composite Materials.
    Sweeney CB; Moran AG; Gruener JT; Strasser AM; Pospisil MJ; Saed MA; Green MJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27252-27259. PubMed ID: 30039965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radio frequency heating and material processing using carbon susceptors.
    Vashisth A; Upama ST; Anas M; Oh JH; Patil N; Green MJ
    Nanoscale Adv; 2021 Sep; 3(18):5255-5264. PubMed ID: 36132636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Heating of Silicon Carbide Fibers under Radio Frequency Fields and Application in Curing Preceramic Polymer Composites.
    Patil N; Zhao X; Mishra NK; Saed MA; Radovic M; Green MJ
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46132-46139. PubMed ID: 31730325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Use of Carbon Fibers as Heating Elements for Curing of Epoxy Matrix Composites.
    Kontaxis LC; Chontzoglou IE; Papanicolaou GC
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating.
    Sweeney CB; Lackey BA; Pospisil MJ; Achee TC; Hicks VK; Moran AG; Teipel BR; Saed MA; Green MJ
    Sci Adv; 2017 Jun; 3(6):e1700262. PubMed ID: 28630927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Shape Forming and Recovering, Induction, and Release of Adhesiveness of Conductive Carbon Nanotube/Epoxy Composites by Joule Heating.
    Slobodian P; Riha P; Olejnik R; Matyas J
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32370040
    [No Abstract]   [Full Text] [Related]  

  • 7. Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes.
    Anas M; Zhao Y; Saed MA; Ziegler KJ; Green MJ
    Nanoscale; 2019 May; 11(19):9617-9625. PubMed ID: 31065650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mechanical Characterization of Welded Hybrid Joints Based on a Fast-Curing Epoxy Composite with an Integrated Phenoxy Coupling Layer.
    Zweifel L; Ritter K; Brauner C
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure.
    Kim JW; Sauti G; Siochi EJ; Smith JG; Wincheski RA; Cano RJ; Connell JW; Wise KE
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18832-43. PubMed ID: 25325388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquids.
    Hameed N; Salim NV; Hanley TL; Sona M; Fox BL; Guo Q
    Phys Chem Chem Phys; 2013 Jul; 15(28):11696-703. PubMed ID: 23752343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated Curing and Enhanced Material Properties of Conductive Polymer Nanocomposites by Joule Heating.
    Jang SH; Kim D; Park YL
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric Barrier Discharge Applicator for Heating Carbon Nanotube-Loaded Interfaces and Enhancing 3D-Printed Bond Strength.
    Sweeney CB; Burnette ML; Pospisil MJ; Shah SA; Anas M; Teipel BR; Zahner BS; Staack D; Green MJ
    Nano Lett; 2020 Apr; 20(4):2310-2315. PubMed ID: 32105487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disassembly Study of Ultrasonically Welded Thermoplastic Composite Joints via Resistance Heating.
    Frederick H; Li W; Palardy G
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and performance of multiwalled carbon nanotube/m-aramid composite films as electric heating elements.
    Jeong YG; Jeon GW
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6527-34. PubMed ID: 23799784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of mashed potato dielectric properties and circulating water electric conductivity on radio frequency heating at 27 MHz.
    Wang J; Olsen RG; Tang J; Tang Z
    J Microw Power Electromagn Energy; 2008; 42(2):31-46. PubMed ID: 19227075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heating of Ti
    Habib T; Patil N; Zhao X; Prehn E; Anas M; Lutkenhaus JL; Radovic M; Green MJ
    Sci Rep; 2019 Nov; 9(1):16489. PubMed ID: 31712667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regenerated cellulose/multiwalled carbon nanotube composite films with efficient electric heating performance.
    Lee TW; Jeong YG
    Carbohydr Polym; 2015 Nov; 133():456-63. PubMed ID: 26344302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycle and Reuse of Continuous Carbon Fibers from Thermoset Composites Using Joule Heating.
    Sarmah A; Sarikaya S; Thiem J; Upama ST; Khalfaoui AN; Dasari SS; Arole K; Hawkins SA; Naraghi M; Vashisth A; Green MJ
    ChemSusChem; 2022 Nov; 15(21):e202200989. PubMed ID: 36040841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method.
    Acikel V; Atalar E
    Med Phys; 2011 Dec; 38(12):6623-32. PubMed ID: 22149844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of heating delay on conversion and strength of a post-cured resin composite.
    Loza-Herrero MA; Rueggeberg FA; Caughman WF; Schuster GS; Lefebvre CA; Gardner FM
    J Dent Res; 1998 Feb; 77(2):426-31. PubMed ID: 9465176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.