BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30039994)

  • 1. Validity of a Microsensor-Based Algorithm for Detecting Scrum Events in Rugby Union.
    Chambers RM; Gabbett TJ; Cole MH
    Int J Sports Physiol Perform; 2019 Feb; 14(2):176-182. PubMed ID: 30039994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic detection of one-on-one tackles and ruck events using microtechnology in rugby union.
    Chambers RM; Gabbett TJ; Gupta R; Josman C; Bown R; Stridgeon P; Cole MH
    J Sci Med Sport; 2019 Jul; 22(7):827-832. PubMed ID: 30642674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable microtechnology can accurately identify collision events during professional rugby league match-play.
    Hulin BT; Gabbett TJ; Johnston RD; Jenkins DG
    J Sci Med Sport; 2017 Jul; 20(7):638-642. PubMed ID: 28153609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Global Positioning System and Microsensor Technology in Competitive Rugby League Match-Play: A Systematic Review and Meta-analysis.
    Hausler J; Halaki M; Orr R
    Sports Med; 2016 Apr; 46(4):559-88. PubMed ID: 26714810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the physical demands of collision sports: does microsensor technology measure what it claims to measure?
    Gabbett TJ
    J Strength Cond Res; 2013 Aug; 27(8):2319-22. PubMed ID: 23090320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of Wearable Microsensors to Quantify Sport-Specific Movements.
    Chambers R; Gabbett TJ; Cole MH; Beard A
    Sports Med; 2015 Jul; 45(7):1065-81. PubMed ID: 25834998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Validity of Automated Tackle Detection in Women's Rugby League.
    Cummins C; Charlton G; Naughton M; Jones B; Minahan C; Murphy A
    J Strength Cond Res; 2022 Jul; 36(7):1951-1955. PubMed ID: 32956263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Specificity of Rugby Union Training Sessions in Preparation for Match Demands.
    Campbell PG; Peake JM; Minett GM
    Int J Sports Physiol Perform; 2018 Apr; 13(4):496-503. PubMed ID: 28872372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement Demands of Elite U20 International Rugby Union Players.
    Cunningham D; Shearer DA; Drawer S; Eager R; Taylor N; Cook C; Kilduff LP
    PLoS One; 2016; 11(4):e0153275. PubMed ID: 27055230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Collision Frequency and Intensity in Rugby Union and Rugby Sevens: A Systematic Review.
    Paul L; Naughton M; Jones B; Davidow D; Patel A; Lambert M; Hendricks S
    Sports Med Open; 2022 Jan; 8(1):12. PubMed ID: 35050440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movement Demands of Elite Under-20s and Senior International Rugby Union Players.
    Cunningham DJ; Shearer DA; Drawer S; Pollard B; Eager R; Taylor N; Cook CJ; Kilduff LP
    PLoS One; 2016; 11(11):e0164990. PubMed ID: 27824865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The movement characteristics of English Premiership rugby union players.
    Cahill N; Lamb K; Worsfold P; Headey R; Murray S
    J Sports Sci; 2013; 31(3):229-37. PubMed ID: 23009129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical demands of professional rugby league training and competition using microtechnology.
    Gabbett TJ; Jenkins DG; Abernethy B
    J Sci Med Sport; 2012 Jan; 15(1):80-6. PubMed ID: 21820959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tackle and impact detection in elite Australian football using wearable microsensor technology.
    Gastin PB; McLean OC; Breed RV; Spittle M
    J Sports Sci; 2014; 32(10):947-53. PubMed ID: 24499311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. External Training Demands in Women's Varsity Rugby Union Players Quantified by Wearable Microtechnology With Individualized Speed Thresholds.
    Nyman DLE; Spriet LL
    J Strength Cond Res; 2022 Nov; 36(11):3151-3158. PubMed ID: 34172634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scrum injury risk in English professional rugby union.
    Taylor AE; Kemp S; Trewartha G; Stokes KA
    Br J Sports Med; 2014 Jul; 48(13):1066-8. PubMed ID: 24603079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proof of Concept of Automated Collision Detection Technology in Rugby Sevens.
    Clarke AC; Anson JM; Pyne DB
    J Strength Cond Res; 2017 Apr; 31(4):1116-1120. PubMed ID: 27467515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Use of Microtechnology to Monitor Collision Performance in Professional Rugby Union.
    MacLeod SJ; Hagan C; Egaña M; Davis J; Drake D
    Int J Sports Physiol Perform; 2018 Sep; 13(8):1075-1082. PubMed ID: 29431538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of rugby union scrummaging.
    Milburn PD
    J Sports Sci; 1990; 8(1):47-60. PubMed ID: 2359151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of rugby union scrummaging. Technical and safety issues.
    Milburn PD
    Sports Med; 1993 Sep; 16(3):168-79. PubMed ID: 8235190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.