These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30040418)

  • 1. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility.
    Mhashal AR; Pshetitsky Y; Eitan R; Cheatum CM; Kohen A; Major DT
    J Phys Chem B; 2018 Aug; 122(33):8006-8017. PubMed ID: 30040418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.
    Wong KF; Selzer T; Benkovic SJ; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6807-12. PubMed ID: 15811945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated motion and the effect of distal mutations in dihydrofolate reductase.
    Rod TH; Radkiewicz JL; Brooks CL
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6980-5. PubMed ID: 12756296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of mutation on enzyme motion in dihydrofolate reductase.
    Watney JB; Agarwal PK; Hammes-Schiffer S
    J Am Chem Soc; 2003 Apr; 125(13):3745-50. PubMed ID: 12656604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of hydride transfer and cofactor fluorescence decay in mutants of dihydrofolate reductase: possible evidence for participation of enzyme molecular motions in catalysis.
    Farnum MF; Magde D; Howell EE; Hirai JT; Warren MS; Grimsley JK; Kraut J
    Biochemistry; 1991 Dec; 30(49):11567-79. PubMed ID: 1747376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy simulations of active-site mutants of dihydrofolate reductase.
    Doron D; Stojković V; Gakhar L; Vardi-Kilshtain A; Kohen A; Major DT
    J Phys Chem B; 2015 Jan; 119(3):906-16. PubMed ID: 25382260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the Met
    Mhashal AR; Vardi-Kilshtain A; Kohen A; Major DT
    J Biol Chem; 2017 Aug; 292(34):14229-14239. PubMed ID: 28620051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tail wagging the dog: insights into catalysis in R67 dihydrofolate reductase.
    Kamath G; Howell EE; Agarwal PK
    Biochemistry; 2010 Oct; 49(42):9078-88. PubMed ID: 20795731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations.
    Hammes-Schiffer S; Watney JB
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1365-73. PubMed ID: 16873124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase.
    Fan Y; Cembran A; Ma S; Gao J
    Biochemistry; 2013 Mar; 52(12):2036-49. PubMed ID: 23297871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.
    Ohmae E; Miyashita Y; Tate S; Gekko K; Kitazawa S; Kitahara R; Kuwajima K
    Biochim Biophys Acta; 2013 Dec; 1834(12):2782-94. PubMed ID: 24140567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple intermediates, diverse conformations, and cooperative conformational changes underlie the catalytic hydride transfer reaction of dihydrofolate reductase.
    Arora K; Brooks CL
    Top Curr Chem; 2013; 337():165-87. PubMed ID: 23420416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of water in the catalytic cycle of E. coli dihydrofolate reductase.
    Shrimpton P; Allemann RK
    Protein Sci; 2002 Jun; 11(6):1442-51. PubMed ID: 12021443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates.
    Rajagopalan PT; Lutz S; Benkovic SJ
    Biochemistry; 2002 Oct; 41(42):12618-28. PubMed ID: 12379104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °C: identification of a single active site region with enhanced flexibility in the mesophilic protein.
    Oyeyemi OA; Sours KM; Lee T; Kohen A; Resing KA; Ahn NG; Klinman JP
    Biochemistry; 2011 Sep; 50(38):8251-60. PubMed ID: 21859100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.