BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30040649)

  • 21. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies.
    Gritsenko AA; Nijkamp JF; Reinders MJ; de Ridder D
    Bioinformatics; 2012 Jun; 28(11):1429-37. PubMed ID: 22492642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding.
    Jiang Y; Ninwichian P; Liu S; Zhang J; Kucuktas H; Sun F; Kaltenboeck L; Sun L; Bao L; Liu Z
    PLoS One; 2013; 8(10):e78872. PubMed ID: 24205335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RFfiller: a robust and fast statistical algorithm for gap filling in draft genomes.
    Midekso FD; Yi G
    PeerJ; 2022; 10():e14186. PubMed ID: 36262414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HiC-Hiker: a probabilistic model to determine contig orientation in chromosome-length scaffolds with Hi-C.
    Nakabayashi R; Morishita S
    Bioinformatics; 2020 Jul; 36(13):3966-3974. PubMed ID: 32369554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LongStitch: high-quality genome assembly correction and scaffolding using long reads.
    Coombe L; Li JX; Lo T; Wong J; Nikolic V; Warren RL; Birol I
    BMC Bioinformatics; 2021 Oct; 22(1):534. PubMed ID: 34717540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single molecule sequencing-guided scaffolding and correction of draft assemblies.
    Zhu S; Chen DZ; Emrich SJ
    BMC Genomics; 2017 Dec; 18(Suppl 10):879. PubMed ID: 29244003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ScaffMatch: scaffolding algorithm based on maximum weight matching.
    Mandric I; Zelikovsky A
    Bioinformatics; 2015 Aug; 31(16):2632-8. PubMed ID: 25890305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AlignGraph2: similar genome-assisted reassembly pipeline for PacBio long reads.
    Huang S; He X; Wang G; Bao E
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33621981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
    Gao S; Sung WK; Nagarajan N
    J Comput Biol; 2011 Nov; 18(11):1681-91. PubMed ID: 21929371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterozygous genome assembly via binary classification of homologous sequence.
    Bodily PM; Fujimoto M; Ortega C; Okuda N; Price JC; Clement MJ; Snell Q
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S5. PubMed ID: 25952609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comprehensive review of scaffolding methods in genome assembly.
    Luo J; Wei Y; Lyu M; Wu Z; Liu X; Luo H; Yan C
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CAR: contig assembly of prokaryotic draft genomes using rearrangements.
    Lu CL; Chen KT; Huang SY; Chiu HT
    BMC Bioinformatics; 2014 Nov; 15(1):381. PubMed ID: 25431302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binnacle: Using Scaffolds to Improve the Contiguity and Quality of Metagenomic Bins.
    Muralidharan HS; Shah N; Meisel JS; Pop M
    Front Microbiol; 2021; 12():638561. PubMed ID: 33717033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Robust
    Mai ZB; Zhou ZH; He QY; Zhang G
    Anal Chem; 2022 Mar; 94(8):3467-3475. PubMed ID: 35171581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The combination of direct and paired link graphs can boost repetitive genome assembly.
    Shi W; Ji P; Zhao F
    Nucleic Acids Res; 2017 Apr; 45(6):e43. PubMed ID: 27924003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach.
    Dvirnas A; Pichler C; Stewart CL; Quaderi S; Nyberg LK; Müller V; Kumar Bikkarolla S; Kristiansson E; Sandegren L; Westerlund F; Ambjörnsson T
    PLoS One; 2018; 13(3):e0193900. PubMed ID: 29522539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SCARPA: scaffolding reads with practical algorithms.
    Donmez N; Brudno M
    Bioinformatics; 2013 Feb; 29(4):428-34. PubMed ID: 23274213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.