BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30040649)

  • 41. ILP-based maximum likelihood genome scaffolding.
    Lindsay J; Salooti H; Măndoiu I; Zelikovsky A
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25253180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. gapFinisher: A reliable gap filling pipeline for SSPACE-LongRead scaffolder output.
    Kammonen JI; Smolander OP; Paulin L; Pereira PAB; Laine P; Koskinen P; Jernvall J; Auvinen P
    PLoS One; 2019; 14(9):e0216885. PubMed ID: 31498807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SLHSD: hybrid scaffolding method based on short and long reads.
    Luo J; Guan T; Chen G; Yu Z; Zhai H; Yan C; Luo H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37141142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.
    Lin HH; Liao YC
    PLoS One; 2015; 10(12):e0144305. PubMed ID: 26641475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes.
    Frenkel Z; Paux E; Mester D; Feuillet C; Korol A
    BMC Bioinformatics; 2010 Nov; 11():584. PubMed ID: 21118513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach.
    Zhu X; Leung HC; Chin FY; Yiu SM; Quan G; Liu B; Wang Y
    PLoS One; 2014; 9(12):e114253. PubMed ID: 25461763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-CSAR: a multiple reference-based contig scaffolder using algebraic rearrangements.
    Chen KT; Shen HT; Lu CL
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):139. PubMed ID: 30598087
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comprehensive evaluation of assembly scaffolding tools.
    Hunt M; Newbold C; Berriman M; Otto TD
    Genome Biol; 2014 Mar; 15(3):R42. PubMed ID: 24581555
    [TBL] [Abstract][Full Text] [Related]  

  • 49. METAMVGL: a multi-view graph-based metagenomic contig binning algorithm by integrating assembly and paired-end graphs.
    Zhang Z; Zhang L
    BMC Bioinformatics; 2021 Jul; 22(Suppl 10):378. PubMed ID: 34294039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Index suffix-prefix overlaps by (w, k)-minimizer to generate long contigs for reads compression.
    Liu Y; Yu Z; Dinger ME; Li J
    Bioinformatics; 2019 Jun; 35(12):2066-2074. PubMed ID: 30407482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 53. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient and scalable scaffolding using optical restriction maps.
    Saha S; Rajasekaran S
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S5. PubMed ID: 25081913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.
    Madoui MA; Dossat C; d'Agata L; van Oeveren J; van der Vossen E; Aury JM
    BMC Bioinformatics; 2016 Mar; 17():115. PubMed ID: 26936254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. EPGA-SC : A Framework for de novo Assembly of Single-Cell Sequencing Reads.
    Liao X; Li M; Luo J; Zou Y; Wu FX; Yi-Pan ; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1492-1503. PubMed ID: 31603794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance.
    Feldmeyer B; Wheat CW; Krezdorn N; Rotter B; Pfenninger M
    BMC Genomics; 2011 Jun; 12():317. PubMed ID: 21679424
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hybrid and scalable error correction algorithm for indel and substitution errors of long reads.
    Das AK; Goswami S; Lee K; Park SJ
    BMC Genomics; 2019 Dec; 20(Suppl 11):948. PubMed ID: 31856721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Benchmarking multi-platform sequencing technologies for human genome assembly.
    Wang J; Veldsman WP; Fang X; Huang Y; Xie X; Lyu A; Zhang L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594299
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Whole Genome Profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome.
    Philippe R; Choulet F; Paux E; van Oeveren J; Tang J; Wittenberg AH; Janssen A; van Eijk MJ; Stormo K; Alberti A; Wincker P; Akhunov E; van der Vossen E; Feuillet C
    BMC Genomics; 2012 Jan; 13():47. PubMed ID: 22289472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.