These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30040649)

  • 61. Pluribus-Exploring the Limits of Error Correction Using a Suffix Tree.
    Savel D; LaFramboise T; Grama A; Koyuturk M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1378-1388. PubMed ID: 27362987
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hybrid assembly of the large and highly repetitive genome of
    Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL
    Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A new strategy for better genome assembly from very short reads.
    Ji Y; Shi Y; Ding G; Li Y
    BMC Bioinformatics; 2011 Dec; 12():493. PubMed ID: 22208765
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An Integer Linear Programming Approach for Scaffolding Based on Exemplar Breakpoint Distance.
    Shieh YK; Peng DY; Chen YH; Wu TW; Lu CL
    J Comput Biol; 2022 Sep; 29(9):961-973. PubMed ID: 35638936
    [TBL] [Abstract][Full Text] [Related]  

  • 67. GapReduce: a gap filling algorithm based on partitioned read sets.
    Luo J; Wang J; Shang J; Luo H; Li M; Wu F; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Jan; ():. PubMed ID: 29993951
    [TBL] [Abstract][Full Text] [Related]  

  • 68. De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing.
    Dhar R; Seethy A; Pethusamy K; Singh S; Rohil V; Purkayastha K; Mukherjee I; Goswami S; Singh R; Raj A; Srivastava T; Acharya S; Rajashekhar B; Karmakar S
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077316
    [TBL] [Abstract][Full Text] [Related]  

  • 69. DTA-SiST: de novo transcriptome assembly by using simplified suffix trees.
    Zhao J; Feng H; Zhu D; Zhang C; Xu Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):698. PubMed ID: 31874618
    [TBL] [Abstract][Full Text] [Related]  

  • 70. On a greedy approach for genome scaffolding.
    Davot T; Chateau A; Fossé R; Giroudeau R; Weller M
    Algorithms Mol Biol; 2022 Oct; 17(1):16. PubMed ID: 36309685
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Instance-based error correction for short reads of disease-associated genes.
    Zhang X; Liu Y; Yu Z; Blumenstein M; Hutvagner G; Li J
    BMC Bioinformatics; 2021 Jun; 22(Suppl 6):142. PubMed ID: 34078284
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improving contig binning of metagenomic data using [Formula: see text] oligonucleotide frequency dissimilarity.
    Wang Y; Wang K; Lu YY; Sun F
    BMC Bioinformatics; 2017 Sep; 18(1):425. PubMed ID: 28931373
    [TBL] [Abstract][Full Text] [Related]  

  • 73. GapFiller: a de novo assembly approach to fill the gap within paired reads.
    Nadalin F; Vezzi F; Policriti A
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S8. PubMed ID: 23095524
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers.
    Medvedev P; Pham S; Chaisson M; Tesler G; Pevzner P
    J Comput Biol; 2011 Nov; 18(11):1625-34. PubMed ID: 21999285
    [TBL] [Abstract][Full Text] [Related]  

  • 75. SLR-superscaffolder: a de novo scaffolding tool for synthetic long reads using a top-to-bottom scheme.
    Guo L; Xu M; Wang W; Gu S; Zhao X; Chen F; Wang O; Xu X; Seim I; Fan G; Deng L; Liu X
    BMC Bioinformatics; 2021 Mar; 22(1):158. PubMed ID: 33765921
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nanopore sequencing and full genome de novo assembly of human cytomegalovirus TB40/E reveals clonal diversity and structural variations.
    Karamitros T; van Wilgenburg B; Wills M; Klenerman P; Magiorkinis G
    BMC Genomics; 2018 Aug; 19(1):577. PubMed ID: 30068288
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simultaneous compression of multiple error-corrected short-read sets for faster data transmission and better de novo assemblies.
    Tang T; Hutvagner G; Wang W; Li J
    Brief Funct Genomics; 2022 Sep; 21(5):387-398. PubMed ID: 35848773
    [TBL] [Abstract][Full Text] [Related]  

  • 78. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments.
    Kosugi S; Hirakawa H; Tabata S
    Bioinformatics; 2015 Dec; 31(23):3733-41. PubMed ID: 26261222
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An efficient error correction algorithm using FM-index.
    Huang YT; Huang YW
    BMC Bioinformatics; 2017 Nov; 18(1):524. PubMed ID: 29179672
    [TBL] [Abstract][Full Text] [Related]  

  • 80. CSAR-web: a web server of contig scaffolding using algebraic rearrangements.
    Chen KT; Lu CL
    Nucleic Acids Res; 2018 Jul; 46(W1):W55-W59. PubMed ID: 29733393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.