These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 30040855)

  • 1. Mapping individual voxel-wise morphological connectivity using wavelet transform of voxel-based morphology.
    Wang XH; Jiao Y; Li L
    PLoS One; 2018; 13(7):e0201243. PubMed ID: 30040855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network centrality in the human functional connectome.
    Zuo XN; Ehmke R; Mennes M; Imperati D; Castellanos FX; Sporns O; Milham MP
    Cereb Cortex; 2012 Aug; 22(8):1862-75. PubMed ID: 21968567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified framework for mapping individual interregional high-order morphological connectivity based on regional cortical features from anatomical MRI.
    Wang XH; Jiao Y; Li L
    Magn Reson Imaging; 2020 Feb; 66():232-239. PubMed ID: 31704393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.
    Wang X; Jiao Y; Tang T; Wang H; Lu Z
    Neuroscience; 2013 Dec; 254():404-26. PubMed ID: 24042040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a standardized structural-functional group connectome in MNI space.
    Horn A; Blankenburg F
    Neuroimage; 2016 Jan; 124(Pt A):310-322. PubMed ID: 26327244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation.
    Wink AM; de Munck JC; van der Werf YD; van den Heuvel OA; Barkhof F
    Brain Connect; 2012; 2(5):265-74. PubMed ID: 23016836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voxel-Wise Functional Connectomics Using Arterial Spin Labeling Functional Magnetic Resonance Imaging: The Role of Denoising.
    Liang X; Connelly A; Calamante F
    Brain Connect; 2015 Nov; 5(9):543-53. PubMed ID: 26020288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-retest reliability of graph metrics in high-resolution functional connectomics: a resting-state functional MRI study.
    Du HX; Liao XH; Lin QX; Li GS; Chi YZ; Liu X; Yang HZ; Wang Y; Xia MR
    CNS Neurosci Ther; 2015 Oct; 21(10):802-16. PubMed ID: 26212146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the voxel-wise effective connectome in resting state FMRI.
    Wu GR; Stramaglia S; Chen H; Liao W; Marinazzo D
    PLoS One; 2013; 8(9):e73670. PubMed ID: 24069220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-subject morphological brain networks: connectivity mapping, topological characterization and test-retest reliability.
    Wang H; Jin X; Zhang Y; Wang J
    Brain Behav; 2016 Apr; 6(4):e00448. PubMed ID: 27088054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional brain hubs and their test-retest reliability: a multiband resting-state functional MRI study.
    Liao XH; Xia MR; Xu T; Dai ZJ; Cao XY; Niu HJ; Zuo XN; Zang YF; He Y
    Neuroimage; 2013 Dec; 83():969-82. PubMed ID: 23899725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voxel-based texture similarity networks reveal individual variability and correlate with biological ontologies.
    Lin L; Chang Z; Zhang Y; Xue K; Xie Y; Wei L; Li X; Zhao Z; Luo Y; Dong H; Liang M; Liu H; Yu C; Qin W; Ding H
    Neuroimage; 2024 Aug; 297():120688. PubMed ID: 38878916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.
    Chu SH; Parhi KK; Lenglet C
    Sci Rep; 2018 Mar; 8(1):4741. PubMed ID: 29549287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-Fragmentation of Resting-State Functional Magnetic Resonance Imaging Connectivity Networks with Node-Wise Thresholding.
    Hayasaka S
    Brain Connect; 2017 Oct; 7(8):504-514. PubMed ID: 28899207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual variability in the anatomical distribution of nodes participating in rich club structural networks.
    Kocher M; Gleichgerrcht E; Nesland T; Rorden C; Fridriksson J; Spampinato MV; Bonilha L
    Front Neural Circuits; 2015; 9():16. PubMed ID: 25954161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
    Wirsich J; Ridley B; Besson P; Jirsa V; Bénar C; Ranjeva JP; Guye M
    Neuroimage; 2017 Nov; 161():251-260. PubMed ID: 28842386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.