These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30040898)

  • 1. Effects of Confinement and Pressure on the Vibrational Behavior of Nano-Confined Propane.
    Gautam S; Kolesnikov AI; Rother G; Dai S; Qiao ZA; Cole D
    J Phys Chem A; 2018 Aug; 122(33):6736-6745. PubMed ID: 30040898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of water on the stochastic motions of propane confined in MCM-41-S pores.
    Gautam S; Le TTB; Rother G; Jalarvo N; Liu T; Mamontov E; Dai S; Qiao ZA; Striolo A; Cole D
    Phys Chem Chem Phys; 2019 Dec; 21(45):25035-25046. PubMed ID: 31690917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study.
    Kittaka S; Takahara S; Matsumoto H; Wada Y; Satoh TJ; Yamaguchi T
    J Chem Phys; 2013 May; 138(20):204714. PubMed ID: 23742507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of propane in slit shaped silica nano-pores: direct comparison with quasielastic neutron scattering experiments.
    Gautam S; Le T; Striolo A; Cole D
    Phys Chem Chem Phys; 2017 Dec; 19(48):32320-32332. PubMed ID: 29181473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fine-tuning pore structures on the dynamics of confined water.
    Kolesnikov AI; Anovitz LM; Hawthorne FC; Podlesnyak A; Schenter GK
    J Chem Phys; 2019 May; 150(20):204706. PubMed ID: 31153199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of confinement on the phase behavior of propane in nanoporous media: an experimental study probing capillary condensation, evaporation, and hysteresis at varying pore sizes and temperatures.
    Alloush RM; Sharma KV; Piri M
    Phys Chem Chem Phys; 2024 Feb; 26(7):5978-5985. PubMed ID: 38291880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propane-Water Mixtures Confined within Cylindrical Silica Nanopores: Structural and Dynamical Properties Probed by Molecular Dynamics.
    Le TTB; Striolo A; Gautam SS; Cole DR
    Langmuir; 2017 Oct; 33(42):11310-11320. PubMed ID: 28910531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pressure on the low-frequency vibrational modes of lysozyme and water: a complementary inelastic neutron scattering and molecular dynamics simulation study.
    Lerbret A; Hédoux A; Annighöfer B; Bellissent-Funel MC
    Proteins; 2013 Feb; 81(2):326-40. PubMed ID: 23011876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational dynamics of confined supercooled water.
    Stefanutti E; Bove LE; Alabarse FG; Lelong G; Bruni F; Ricci MA
    J Chem Phys; 2019 Jun; 150(22):224504. PubMed ID: 31202218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is there a liquid-liquid transition in confined water?
    Xu L; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14210-6. PubMed ID: 21923129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis.
    Wang Z; Le P; Ito K; Leão JB; Tyagi M; Chen SH
    J Chem Phys; 2015 Sep; 143(11):114508. PubMed ID: 26395720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasielastic neutron scattering of poly(methyl phenyl siloxane) in the bulk and under severe confinement.
    Chrissopoulou K; Anastasiadis SH; Giannelis EP; Frick B
    J Chem Phys; 2007 Oct; 127(14):144910. PubMed ID: 17935442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous dynamics of aqueous solutions of di-propylene glycol methylether confined in MCM-41 by quasielastic neutron scattering.
    Swenson J; Elamin K; Chen G; Lohstroh W; Garcia Sakai V
    J Chem Phys; 2014 Dec; 141(21):214501. PubMed ID: 25481146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confinement-Induced Supercriticality and Phase Equilibria of Hydrocarbons in Nanopores.
    Luo S; Lutkenhaus JL; Nasrabadi H
    Langmuir; 2016 Nov; 32(44):11506-11513. PubMed ID: 27754674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of small-molecule glass formers confined in nanopores.
    Prisk TR; Tyagi M; Sokol PE
    J Chem Phys; 2011 Mar; 134(11):114506. PubMed ID: 21428631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase diagram and glass transition of confined benzene.
    Xia Y; Dosseh G; Morineau D; Alba-Simionesco C
    J Phys Chem B; 2006 Oct; 110(39):19735-44. PubMed ID: 17004844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of ice confined in silica nanopores.
    Mohammed S; Asgar H; Benmore CJ; Gadikota G
    Phys Chem Chem Phys; 2021 Jun; 23(22):12706-12717. PubMed ID: 34037014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the dynamics and structure of confined benzene in MCM-41 based catalysts.
    Dervin D; O'Malley AJ; Falkowska M; Chansai S; Silverwood IP; Hardacre C; Catlow CRA
    Phys Chem Chem Phys; 2020 May; 22(20):11485-11489. PubMed ID: 32391840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on Phase Transitions of Carbon Dioxide Confined in Nanopores: Evaporation, Melting, Sublimation, and Triple Point.
    Yang H; Dejam M; Tan SP; Adidharma H
    Langmuir; 2023 Nov; 39(45):16060-16068. PubMed ID: 37917914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inelastic neutron scattering study of a glass-forming liquid in soft confinement.
    Zorn R; Mayorova M; Richter D; Frick B
    Soft Matter; 2008 Feb; 4(3):522-533. PubMed ID: 32907215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.