These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30041141)

  • 21. Fabrication of Mg alloy tubes for biodegradable stent application.
    Hanada K; Matsuzaki K; Huang X; Chino Y
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4746-50. PubMed ID: 24094183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of magnesium implants by application of conjoint-based quality function deployment.
    Siefen S; Höck M
    J Biomed Mater Res A; 2019 Dec; 107(12):2814-2834. PubMed ID: 31430033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of surface and biomolecules on magnesium degradation and mesenchymal stem cell adhesion.
    Liu H
    J Biomed Mater Res A; 2011 Nov; 99(2):249-60. PubMed ID: 21976450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The attraction of a lightweight metal with mechanical properties suitable for many applications brought a renewed focus on magnesium alloys in the automotive and aerospace industries.
    Mantovani D; Witte F
    Acta Biomater; 2010 May; 6(5):1679. PubMed ID: 20176150
    [No Abstract]   [Full Text] [Related]  

  • 25. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials.
    Brar HS; Wong J; Manuel MV
    J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications.
    Bian D; Zhou W; Deng J; Liu Y; Li W; Chu X; Xiu P; Cai H; Kou Y; Jiang B; Zheng Y
    Acta Biomater; 2017 Dec; 64():421-436. PubMed ID: 28987782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved blood compatibility of Mg-1.0Zn-1.0Ca alloy by micro-arc oxidation.
    Zhang BP; Qiu H; Wang DW; Liu YQ; Bi ZG
    J Biomed Mater Res A; 2011 Nov; 99(2):166-72. PubMed ID: 21976441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface characterization and cytotoxicity response of biodegradable magnesium alloys.
    Pompa L; Rahman ZU; Munoz E; Haider W
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():761-768. PubMed ID: 25687006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.
    Zhang E; Yang L; Xu J; Chen H
    Acta Biomater; 2010 May; 6(5):1756-62. PubMed ID: 19941979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutrient alloying elements in biodegradable metals: a review.
    Li H; Lin G; Wang P; Huang J; Wen C
    J Mater Chem B; 2021 Dec; 9(48):9806-9825. PubMed ID: 34842888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing.
    Henderson HB; Ramaswamy V; Wilson-Heid AE; Kesler MS; Allen JB; Manuel MV
    J Mech Behav Biomed Mater; 2018 Apr; 80():285-292. PubMed ID: 29455038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility.
    Li G; Yang H; Zheng Y; Chen XH; Yang JA; Zhu D; Ruan L; Takashima K
    Acta Biomater; 2019 Oct; 97():23-45. PubMed ID: 31349057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing and properties of magnesium alloy micro-tubes for biodegradable vascular stents.
    Wang J; Zhou Y; Yang Z; Zhu S; Wang L; Guan S
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():504-513. PubMed ID: 29853119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of rare earth elements in biodegradable metals: A review.
    Li H; Wang P; Lin G; Huang J
    Acta Biomater; 2021 Jul; 129():33-42. PubMed ID: 34022465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications.
    Katarivas Levy G; Leon A; Kafri A; Ventura Y; Drelich JW; Goldman J; Vago R; Aghion E
    J Mater Sci Mater Med; 2017 Sep; 28(11):174. PubMed ID: 28956207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Security assessment of magnesium alloys used as biodegradable implant material.
    Sun X; Cao ZY; Liu JG; Feng C
    Biomed Mater Eng; 2015; 26 Suppl 1():S119-27. PubMed ID: 26405877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances on the development of magnesium alloys for biodegradable implants.
    Chen Y; Xu Z; Smith C; Sankar J
    Acta Biomater; 2014 Nov; 10(11):4561-4573. PubMed ID: 25034646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy.
    Myrissa A; Braeuer S; Martinelli E; Willumeit-Römer R; Goessler W; Weinberg AM
    Acta Biomater; 2017 Jan; 48():521-529. PubMed ID: 27845277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.
    Hedayati R; Ahmadi SM; Lietaert K; Tümer N; Li Y; Amin Yavari S; Zadpoor AA
    J Biomed Mater Res A; 2018 Jul; 106(7):1798-1811. PubMed ID: 29468807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications.
    Lock JY; Wyatt E; Upadhyayula S; Whall A; Nuñez V; Vullev VI; Liu H
    J Biomed Mater Res A; 2014 Mar; 102(3):781-92. PubMed ID: 23564415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.