These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 30041141)
41. In vitro interactions of blood, platelet, and fibroblast with biodegradable magnesium-zinc-strontium alloys. Nguyen TY; Cipriano AF; Guan RG; Zhao ZY; Liu H J Biomed Mater Res A; 2015 Sep; 103(9):2974-86. PubMed ID: 25690931 [TBL] [Abstract][Full Text] [Related]
42. Tackling Mg alloy corrosion by natural polymer coatings-A review. Heise S; Virtanen S; Boccaccini AR J Biomed Mater Res A; 2016 Oct; 104(10):2628-41. PubMed ID: 27159153 [TBL] [Abstract][Full Text] [Related]
43. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy. Sealy MP; Guo YB J Mech Behav Biomed Mater; 2010 Oct; 3(7):488-96. PubMed ID: 20696413 [TBL] [Abstract][Full Text] [Related]
44. Peri-implant tissue response and biodegradation performance of a Mg-1.0Ca-0.5Sr alloy in rat tibia. Berglund IS; Jacobs BY; Allen KD; Kim SE; Pozzi A; Allen JB; Manuel MV Mater Sci Eng C Mater Biol Appl; 2016 May; 62():79-85. PubMed ID: 26952400 [TBL] [Abstract][Full Text] [Related]
45. Magnesium and its alloys as orthopedic biomaterials: a review. Staiger MP; Pietak AM; Huadmai J; Dias G Biomaterials; 2006 Mar; 27(9):1728-34. PubMed ID: 16246414 [TBL] [Abstract][Full Text] [Related]
46. Influence of biocorrosion on microstructure and mechanical properties of deformed Mg-Y-Er-Zn biomaterial containing 18R-LPSO phase. Leng Z; Zhang J; Yin T; Zhang L; Guo X; Peng Q; Zhang M; Wu R J Mech Behav Biomed Mater; 2013 Dec; 28():332-9. PubMed ID: 24036280 [TBL] [Abstract][Full Text] [Related]
47. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure. Bornapour M; Celikin M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():16-24. PubMed ID: 25491955 [TBL] [Abstract][Full Text] [Related]
48. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. Bian D; Zhou W; Liu Y; Li N; Zheng Y; Sun Z Acta Biomater; 2016 Sep; 41():351-60. PubMed ID: 27221795 [TBL] [Abstract][Full Text] [Related]
49. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation. Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262 [TBL] [Abstract][Full Text] [Related]
50. Effect of macrophages on in vitro corrosion behavior of magnesium alloy. Zhang J; Hiromoto S; Yamazaki T; Niu J; Huang H; Jia G; Li H; Ding W; Yuan G J Biomed Mater Res A; 2016 Oct; 104(10):2476-87. PubMed ID: 27223576 [TBL] [Abstract][Full Text] [Related]
51. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Dorozhkin SV Acta Biomater; 2014 Jul; 10(7):2919-34. PubMed ID: 24607420 [TBL] [Abstract][Full Text] [Related]
52. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Li Z; Gu X; Lou S; Zheng Y Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191 [TBL] [Abstract][Full Text] [Related]
53. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Li HF; Xie XH; Zheng YF; Cong Y; Zhou FY; Qiu KJ; Wang X; Chen SH; Huang L; Tian L; Qin L Sci Rep; 2015 May; 5():10719. PubMed ID: 26023878 [TBL] [Abstract][Full Text] [Related]
54. Magnesium alloys as implant materials--principles of property design for Mg-RE alloys. Hort N; Huang Y; Fechner D; Störmer M; Blawert C; Witte F; Vogt C; Drücker H; Willumeit R; Kainer KU; Feyerabend F Acta Biomater; 2010 May; 6(5):1714-25. PubMed ID: 19788945 [TBL] [Abstract][Full Text] [Related]
55. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing. Salahshoor M; Li C; Liu ZY; Fang XY; Guo YB J Mech Behav Biomed Mater; 2018 Feb; 78():246-253. PubMed ID: 29179040 [TBL] [Abstract][Full Text] [Related]
56. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. Gu XN; Zhou WR; Zheng YF; Cheng Y; Wei SC; Zhong SP; Xi TF; Chen LJ Acta Biomater; 2010 Dec; 6(12):4605-13. PubMed ID: 20656074 [TBL] [Abstract][Full Text] [Related]
57. A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Mao L; Shen L; Chen J; Zhang X; Kwak M; Wu Y; Fan R; Zhang L; Pei J; Yuan G; Song C; Ge J; Ding W Sci Rep; 2017 Apr; 7():46343. PubMed ID: 28397881 [TBL] [Abstract][Full Text] [Related]
58. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. Drynda A; Hassel T; Hoehn R; Perz A; Bach FW; Peuster M J Biomed Mater Res A; 2010 May; 93(2):763-75. PubMed ID: 19653306 [TBL] [Abstract][Full Text] [Related]
59. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Kubásek J; Vojtěch D; Jablonská E; Pospíšilová I; Lipov J; Ruml T Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():24-35. PubMed ID: 26478283 [TBL] [Abstract][Full Text] [Related]
60. Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys. Pan Y; Chen C; Feng R; Cui H; Gong B; Zheng T; Ji Y Biointerphases; 2018 Jan; 13(1):011003. PubMed ID: 29338270 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]