These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 30041141)
61. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials. Kuśnierczyk K; Basista M J Biomater Appl; 2017 Jan; 31(6):878-900. PubMed ID: 27368753 [TBL] [Abstract][Full Text] [Related]
62. Magnesium alloy wires as reinforcement in composite intramedullary nails. Morawska-Chochół A; Chłopek J; Domalik-Pyzik P; Szaraniec B; Grzyśka E Biomed Mater Eng; 2014; 24(2):1507-15. PubMed ID: 24642977 [TBL] [Abstract][Full Text] [Related]
63. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163 [TBL] [Abstract][Full Text] [Related]
64. Processing and coating of open-pored absorbable magnesium-based bone implants. Julmi S; Krüger AK; Waselau AC; Meyer-Lindenberg A; Wriggers P; Klose C; Maier HJ Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1073-1086. PubMed ID: 30812991 [TBL] [Abstract][Full Text] [Related]
65. The bioeffects of degradable products derived from a biodegradable Mg-based alloy in macrophages via heterophagy. Jin L; Chen C; Jia G; Li Y; Zhang J; Huang H; Kang B; Yuan G; Zeng H; Chen T Acta Biomater; 2020 Apr; 106():428-438. PubMed ID: 32044459 [TBL] [Abstract][Full Text] [Related]
66. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717 [TBL] [Abstract][Full Text] [Related]
67. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials. Ur Rahman Z; Pompa L; Haider W J Mater Sci Mater Med; 2015 Aug; 26(8):217. PubMed ID: 26216551 [TBL] [Abstract][Full Text] [Related]
69. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218 [TBL] [Abstract][Full Text] [Related]
70. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Li X; Chu CL; Liu L; Liu XK; Bai J; Guo C; Xue F; Lin PH; Chu PK Biomaterials; 2015 May; 49():135-44. PubMed ID: 25725562 [TBL] [Abstract][Full Text] [Related]
71. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Willbold E; Gu X; Albert D; Kalla K; Bobe K; Brauneis M; Janning C; Nellesen J; Czayka W; Tillmann W; Zheng Y; Witte F Acta Biomater; 2015 Jan; 11():554-62. PubMed ID: 25278442 [TBL] [Abstract][Full Text] [Related]
72. In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Bao G; Fan Q; Ge D; Sun M; Guo H; Xia D; Liu Y; Liu J; Wu S; He B; Zheng Y Acta Biomater; 2019 Oct; 97():623-636. PubMed ID: 31386929 [TBL] [Abstract][Full Text] [Related]
73. Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy. Lin DJ; Hung FY; Lui TS; Yeh ML Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():300-8. PubMed ID: 25842139 [TBL] [Abstract][Full Text] [Related]
74. Porous magnesium-based scaffolds for tissue engineering. Yazdimamaghani M; Razavi M; Vashaee D; Moharamzadeh K; Boccaccini AR; Tayebi L Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1253-1266. PubMed ID: 27987682 [TBL] [Abstract][Full Text] [Related]
75. Investigation into the hot workability of the as-extruded WE43 magnesium alloy using processing map. Wang L; Fang G; Leeflang S; Duszczyk J; Zhou J J Mech Behav Biomed Mater; 2014 Apr; 32():270-278. PubMed ID: 24508713 [TBL] [Abstract][Full Text] [Related]
76. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization. Marco I; Feyerabend F; Willumeit-Römer R; Van der Biest O Mater Sci Eng C Mater Biol Appl; 2016 May; 62():68-78. PubMed ID: 26952399 [TBL] [Abstract][Full Text] [Related]
77. Application and Perspectives: Magnesium Materials in Bone Regeneration. Zhou Y; Zhang A; Wu J; Guo S; Sun Q ACS Biomater Sci Eng; 2024 Jun; 10(6):3514-3527. PubMed ID: 38723173 [TBL] [Abstract][Full Text] [Related]
78. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Kannan MB; Raman RK Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746 [TBL] [Abstract][Full Text] [Related]
79. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Agarwal S; Curtin J; Duffy B; Jaiswal S Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():948-963. PubMed ID: 27524097 [TBL] [Abstract][Full Text] [Related]
80. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications. Mostaed E; Vedani M; Hashempour M; Bestetti M Biomatter; 2014; 4():e28283. PubMed ID: 25482411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]