These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30041373)

  • 1. Fate of hopane biomarkers during in-situ burning of crude oil - A laboratory-scale study.
    John GF; Han Y; Clement TP
    Mar Pollut Bull; 2018 Aug; 133():756-761. PubMed ID: 30041373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the thermal degradation patterns of hopane biomarker compounds present in crude oil.
    Han Y; John GF; Clement TP
    Sci Total Environ; 2019 Jun; 667():792-798. PubMed ID: 30851612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fingerprint stability of the biomarker hopanes and steranes in soot emissions from in-situ burning of oil.
    Yin F; He Z; Song Z; Su P; Zhang L; Feng D; Yang T
    Sci Total Environ; 2022 Sep; 839():156273. PubMed ID: 35643145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill.
    Stout SA; Payne JR
    Mar Pollut Bull; 2016 Jul; 108(1-2):186-202. PubMed ID: 27132992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline.
    Mulabagal V; Yin F; John GF; Hayworth JS; Clement TP
    Mar Pollut Bull; 2013 May; 70(1-2):147-54. PubMed ID: 23523118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental fate of petroleum biomarkers in Deepwater Horizon oil spill residues over the past 10 years.
    Arekhi M; Terry LG; John GF; Clement TP
    Sci Total Environ; 2021 Oct; 791():148056. PubMed ID: 34119781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semipermeable membrane devices accumulate conserved ratios of sterane and hopane petroleum biomarkers.
    Luellen DR; Shea D
    Chemosphere; 2003 Nov; 53(7):705-13. PubMed ID: 13129510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the source of oil deposited in the surface sediment of Mormugao Port, Goa - A case study of MV Qing incident.
    Suneel V; Saha M; Rathore C; Sequeira J; Mohan PMN; Ray D; Veerasingam S; Rao VT; Vethamony P
    Mar Pollut Bull; 2019 Aug; 145():88-95. PubMed ID: 31590838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combustion of crude oil during in-situ burning can introduce polycyclic aromatic compounds (PACs) into small-scale freshwater systems.
    Blandford NC; Peters L; Timlick L; Rodríguez-Gil JL; Palace V
    J Environ Manage; 2022 Nov; 322():116078. PubMed ID: 36063694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic biodegradation of hopanes and other biomarkers by crude oil-degrading enrichment cultures.
    Frontera-Suau R; Bost FD; McDonald TJ; Morris PJ
    Environ Sci Technol; 2002 Nov; 36(21):4585-92. PubMed ID: 12433168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aliphatic hydrocarbons and triterpane biomarkers in mangrove oyster (Crassostrea belcheri) from the west coast of Peninsular Malaysia.
    Vaezzadeh V; Zakaria MP; Bong CW
    Mar Pollut Bull; 2017 Nov; 124(1):33-42. PubMed ID: 28693809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of heavy oil wastes in soil microcosms. II: A performance assessment of source correlation indices.
    Whittaker M; Pollard SJ; Risden G
    Sci Total Environ; 1999 Feb; 226(1):23-34. PubMed ID: 10077872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical herding of weathered crude oils for in-situ burning.
    Rojas-Alva U; Skjønning Andersen B; Jomaas G
    J Environ Manage; 2019 Nov; 250():109470. PubMed ID: 31479937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical fingerprinting and characterization of spilled oils and burnt soot particles - A case study on the Sanchi oil tanker collision in the East China Sea.
    Yin F; Song Z; He Z; Qin B; John GF; Zhang L; Su P; Zhang W; Yang T
    Sci Total Environ; 2022 Jun; 824():153896. PubMed ID: 35182621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of weathered chemically dispersed oil from weathered crude oil.
    Song X; Lye LM; Chen B; Zhang B
    Environ Monit Assess; 2019 Apr; 191(5):270. PubMed ID: 30963288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of biodegradation on gammacerane in crude oils.
    Huang H
    Biodegradation; 2017 Aug; 28(4):313-326. PubMed ID: 28656497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of a chemical herder in association with in-situ burning of oil spills in ice-infested water.
    van Gelderen L; Fritt-Rasmussen J; Jomaas G
    Mar Pollut Bull; 2017 Feb; 115(1-2):345-351. PubMed ID: 28003056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical composition and acute toxicity in the water after in situ burning--a laboratory experiment.
    Faksness LG; Hansen BH; Altin D; Brandvik PJ
    Mar Pollut Bull; 2012 Jan; 64(1):49-55. PubMed ID: 22112284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Burning for Oil Spill Response in the Arctic: Recovery and Quantification of Chemical Herding Agent OP-40 from Burned Oil Residues.
    Hasan MI; Aggarwal S
    Arch Environ Contam Toxicol; 2023 Jan; 84(1):153-163. PubMed ID: 36207538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of bilge oil with lubricant: Recent oil spill case studies.
    Lee D; Seo JM; Kooistra K; Lee H
    Environ Res; 2022 Sep; 212(Pt B):113325. PubMed ID: 35439455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.