These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30041434)

  • 1. Zebrafish as a Model to Evaluate Nanoparticle Toxicity.
    Haque E; Ward AC
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30041434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity.
    Chakraborty C; Sharma AR; Sharma G; Lee SS
    J Nanobiotechnology; 2016 Aug; 14(1):65. PubMed ID: 27544212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.
    Das J; Choi YJ; Song H; Kim JH
    Hum Reprod Update; 2016 Sep; 22(5):588-619. PubMed ID: 27385359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sensitive refining of in vitro and in vivo toxicological behavior of green synthesized ZnO nanoparticles from the shells of Jatropha curcas for multifunctional biomaterials development.
    Suriyaprabha R; Balu KS; Karthik S; Prabhu M; Rajendran V; Aicher WK; Maaza M
    Ecotoxicol Environ Saf; 2019 Nov; 184():109621. PubMed ID: 31520953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of embryonic and adult zebrafish for nanotoxicity assessment.
    Wang J; Zhu X; Chen Y; Chang Y
    Methods Mol Biol; 2012; 926():317-29. PubMed ID: 22975972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment.
    Balmuri SR; Selvaraj U; Kumar VV; Anthony SP; Tsatsakis AM; Golokhvast KS; Raman T
    Environ Res; 2017 Jan; 152():141-149. PubMed ID: 27771568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are iron oxide nanoparticles safe? Current knowledge and future perspectives.
    Valdiglesias V; Fernández-Bertólez N; Kiliç G; Costa C; Costa S; Fraga S; Bessa MJ; Pásaro E; Teixeira JP; Laffon B
    J Trace Elem Med Biol; 2016 Dec; 38():53-63. PubMed ID: 27056797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Nanotoxicity Testing using the Zebrafish Embryo Assay.
    Rizzo LY; Golombek SK; Mertens ME; Pan Y; Laaf D; Broda J; Jayapaul J; Möckel D; Subr V; Hennink WE; Storm G; Simon U; Jahnen-Dechent W; Kiessling F; Lammers T
    J Mater Chem B; 2013 Jun; 1():. PubMed ID: 24179674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies.
    Sharma N; Kurmi BD; Singh D; Mehan S; Khanna K; Karwasra R; Kumar S; Chaudhary A; Jakhmola V; Sharma A; Singh SK; Dua K; Kakkar D
    J Drug Target; 2024 Jun; 32(5):457-469. PubMed ID: 38328920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesized MgO nanoparticles infer biocompatibility by reducing in vivo molecular nanotoxicity in embryonic zebrafish through arginine interaction elicited apoptosis.
    Verma SK; Nisha K; Panda PK; Patel P; Kumari P; Mallick MA; Sarkar B; Das B
    Sci Total Environ; 2020 Apr; 713():136521. PubMed ID: 31951838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, Danio rerio.
    P K; M P; Samuel Rajendran R; Annadurai G; Rajeshkumar S
    Drug Chem Toxicol; 2019 Jan; 42(1):104-111. PubMed ID: 30456988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and toxicity of novel iron chelator Starch-Deferoxamine (S-DFO) compared to zinc oxide nanoparticles to zebrafish embryo: An oxidative stress based apoptosis, physicochemical and neurological study profile.
    Nasrallah GK; Salem R; Da'as S; Al-Jamal OLA; Scott M; Mustafa I
    Neurotoxicol Teratol; 2019; 72():29-38. PubMed ID: 30710618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.
    Zhu X; Zhu L; Duan Z; Qi R; Li Y; Lang Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(3):278-84. PubMed ID: 18205059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death.
    Khanna P; Ong C; Bay BH; Baeg GH
    Nanomaterials (Basel); 2015 Jun; 5(3):1163-1180. PubMed ID: 28347058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach.
    Pereira AC; Gomes T; Ferreira Machado MR; Rocha TL
    Environ Pollut; 2019 Sep; 252(Pt B):1841-1853. PubMed ID: 31325757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio).
    Hua J; Vijver MG; Richardson MK; Ahmad F; Peijnenburg WJ
    Environ Toxicol Chem; 2014 Dec; 33(12):2859-68. PubMed ID: 25244315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.
    Sarkar A; Ghosh M; Sil PC
    J Nanosci Nanotechnol; 2014 Jan; 14(1):730-43. PubMed ID: 24730293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles Toxicity in Fish Models.
    Cazenave J; Ale A; Bacchetta C; Rossi AS
    Curr Pharm Des; 2019; 25(37):3927-3942. PubMed ID: 31512995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish embryo as a replacement model for initial biocompatibility studies of biomaterials and drug delivery systems.
    Rothenbücher TSP; Ledin J; Gibbs D; Engqvist H; Persson C; Hulsart-Billström G
    Acta Biomater; 2019 Dec; 100():235-243. PubMed ID: 31585201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.