These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 30041442)
1. Strategy for Screening of Antioxidant Compounds from Two Ulmaceae Species Based on Liquid Chromatography-Mass Spectrometry. Won JY; Son SY; Lee S; Singh D; Lee S; Lee JS; Lee CH Molecules; 2018 Jul; 23(7):. PubMed ID: 30041442 [TBL] [Abstract][Full Text] [Related]
2. Exploring the metabolomic diversity of plant species across spatial (leaf and stem) components and phylogenic groups. Lee S; Oh DG; Singh D; Lee JS; Lee S; Lee CH BMC Plant Biol; 2020 Jan; 20(1):39. PubMed ID: 31992195 [TBL] [Abstract][Full Text] [Related]
3. Systematic metabolic profiling and bioactivity assays for bioconversion of Aceraceae family. Park J; Suh DH; Singh D; Lee S; Lee JS; Lee CH PLoS One; 2018; 13(6):e0198739. PubMed ID: 29879203 [TBL] [Abstract][Full Text] [Related]
4. Chemotaxonomic Metabolite Profiling of 62 Indigenous Plant Species and Its Correlation with Bioactivities. Lee S; Oh DG; Lee S; Kim GR; Lee JS; Son YK; Bae CH; Yeo J; Lee CH Molecules; 2015 Nov; 20(11):19719-34. PubMed ID: 26540030 [TBL] [Abstract][Full Text] [Related]
5. Nontargeted metabolomics approach to determine metabolites profile and antioxidant study of Tropical Almond (Terminalia catappa L.) fruit peels using GC-QTOF-MS and LC-QTOF-MS. Kaneria MJ; Rakholiya KD; Marsonia LR; Dave RA; Golakiya BA J Pharm Biomed Anal; 2018 Oct; 160():415-427. PubMed ID: 30138813 [TBL] [Abstract][Full Text] [Related]
6. Metabolomic Profiling of Antioxidant Compounds in Five More GK; Meddows-Taylor S; Prinsloo G Molecules; 2021 Oct; 26(20):. PubMed ID: 34684798 [TBL] [Abstract][Full Text] [Related]
7. Use of ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry system as valuable tool for an untargeted metabolomic profiling of Rumex tunetanus flowers and stems and contribution to the antioxidant activity. Abidi J; Ammar S; Ben Brahim S; Skalicka-Woźniak K; Ghrabi-Gammar Z; Bouaziz M J Pharm Biomed Anal; 2019 Jan; 162():66-81. PubMed ID: 30223144 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant Activity of the Lignins Derived from Fluidized-Bed Fast Pyrolysis. Qazi SS; Li D; Briens C; Berruti F; Abou-Zaid MM Molecules; 2017 Mar; 22(3):. PubMed ID: 28257062 [TBL] [Abstract][Full Text] [Related]
9. A Comparative UHPLC-Q-Trap-MS/MS-Based Metabolomics Analysis to Distinguish Crescenzi MA; D'Urso G; Piacente S; Montoro P Molecules; 2023 Jan; 28(2):. PubMed ID: 36677955 [TBL] [Abstract][Full Text] [Related]
10. Antioxidants and α-glucosidase inhibitors from Neptunia oleracea fractions using Lee SY; Mediani A; Ismail IS; Maulidiani ; Abas F BMC Complement Altern Med; 2019 Jan; 19(1):7. PubMed ID: 30616569 [TBL] [Abstract][Full Text] [Related]
11. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf. Silinsin M; Bursal E Nat Prod Res; 2018 Jun; 32(12):1467-1471. PubMed ID: 28697630 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Flavonoids in Lotus (Nelumbo nucifera) Leaves and Their Antioxidant Activity Using Macroporous Resin Chromatography Coupled with LC-MS/MS and Antioxidant Biochemical Assays. Zhu MZ; Wu W; Jiao LL; Yang PF; Guo MQ Molecules; 2015 Jun; 20(6):10553-65. PubMed ID: 26060918 [TBL] [Abstract][Full Text] [Related]
13. Sempervivum davisii: phytochemical composition, antioxidant and lipase-inhibitory activities. Uzun Y; Dalar A; Konczak I Pharm Biol; 2017 Dec; 55(1):532-540. PubMed ID: 27937045 [TBL] [Abstract][Full Text] [Related]
14. Qualitative and spatial metabolite profiling of lichens by a LC-MS approach combined with optimised extraction. Parrot D; Peresse T; Hitti E; Carrie D; Grube M; Tomasi S Phytochem Anal; 2015; 26(1):23-33. PubMed ID: 25130294 [TBL] [Abstract][Full Text] [Related]
15. Separation, identification, and fingerprinting of antioxidant components in persimmon (Diospyros kaki) leaves by offline two-dimensional liquid chromatography with electrochemical detection and tandem mass spectrometry. Yang X; Shao Q; Luo Q; Wang Y; Chun Z; Li Z; Jiao L; Zhou Y; Chen R J Sep Sci; 2024 Jun; 47(11):e2300917. PubMed ID: 38819793 [TBL] [Abstract][Full Text] [Related]
16. Chemotaxonomic Studies of Nine Gentianaceae Species from Western China Based on Liquid Chromatography Tandem Mass Spectrometry and Fourier Transform Infrared Spectroscopy. Pan Y; Zhang J; Zhao YL; Wang YZ; Jin H Phytochem Anal; 2016 May; 27(3-4):158-67. PubMed ID: 26919544 [TBL] [Abstract][Full Text] [Related]
17. Comparative UPLC-QTOF-MS-based metabolomics and bioactivities analyses of Garcinia oblongifolia. Li P; AnandhiSenthilkumar H; Wu SB; Liu B; Guo ZY; Fata JE; Kennelly EJ; Long CL J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():179-95. PubMed ID: 26773895 [TBL] [Abstract][Full Text] [Related]
18. Isolation and identification of antioxidant compounds from Ligularia fischeri. Shang YF; Kim SM; Song DG; Pan CH; Lee WJ; Um BH J Food Sci; 2010 Aug; 75(6):C530-5. PubMed ID: 20722907 [TBL] [Abstract][Full Text] [Related]
19. The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic pathways or a marketing argument? Bruno C; Patin F; Bocca C; Nadal-Desbarats L; Bonnier F; Reynier P; Emond P; Vourc'h P; Joseph-Delafont K; Corcia P; Andres CR; Blasco H J Pharm Biomed Anal; 2018 Jan; 148():273-279. PubMed ID: 29059617 [TBL] [Abstract][Full Text] [Related]
20. Rapid identification and evaluation of antioxidant compounds from extracts of Petasites japonicus by hyphenated-HPLC techniques. Kim SM; Kang SW; Jeon JS; Jung YJ; Kim CY; Pan CH; Um BH Biomed Chromatogr; 2012 Feb; 26(2):199-207. PubMed ID: 21656532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]