These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 30041448)
1. Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators. Ali AE; Sloane DR; Strezov V Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 30041448 [TBL] [Abstract][Full Text] [Related]
2. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia. Ali A; Strezov V; Davies P; Wright I Environ Monit Assess; 2017 Aug; 189(8):408. PubMed ID: 28733784 [TBL] [Abstract][Full Text] [Related]
3. Consistent declines in aquatic biodiversity across diverse domains of life in rivers impacted by surface coal mining. Simonin M; Rocca JD; Gerson JR; Moore E; Brooks AC; Czaplicki L; Ross MRV; Fierer N; Craine JM; Bernhardt ES Ecol Appl; 2021 Sep; 31(6):e02389. PubMed ID: 34142402 [TBL] [Abstract][Full Text] [Related]
4. The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania. Maccausland A; McTammany ME Environ Pollut; 2007 Sep; 149(2):216-26. PubMed ID: 17395348 [TBL] [Abstract][Full Text] [Related]
5. River sediment quality assessment using sediment quality indices for the Sydney basin, Australia affected by coal and coal seam gas mining. Ali AE; Strezov V; Davies PJ; Wright I Sci Total Environ; 2018 Mar; 616-617():695-702. PubMed ID: 29111250 [TBL] [Abstract][Full Text] [Related]
6. Effects of coal mining, forestry, and road construction on southern Appalachian stream invertebrates and habitats. Gangloff MM; Perkins M; Blum PW; Walker C Environ Manage; 2015 Mar; 55(3):702-14. PubMed ID: 25528595 [TBL] [Abstract][Full Text] [Related]
7. Surface coal mining influences on macroinvertebrate assemblages in streams of the Canadian Rocky Mountains. Kuchapski KA; Rasmussen JB Environ Toxicol Chem; 2015 Sep; 34(9):2138-48. PubMed ID: 25939772 [TBL] [Abstract][Full Text] [Related]
8. Detecting the impact of heavy metal contaminated sediment on benthic macroinvertebrate communities in tropical streams. Bere T; Dalu T; Mwedzi T Sci Total Environ; 2016 Dec; 572():147-156. PubMed ID: 27494661 [TBL] [Abstract][Full Text] [Related]
9. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function. Bott TL; Jackson JK; McTammany ME; Newbold JD; Rier ST; Sweeney BW; Battle JM Ecol Appl; 2012 Dec; 22(8):2144-63. PubMed ID: 23387116 [TBL] [Abstract][Full Text] [Related]
10. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities. Clapcott JE; Goodwin EO; Harding JS Environ Manage; 2016 Mar; 57(3):711-21. PubMed ID: 26467674 [TBL] [Abstract][Full Text] [Related]
11. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City]. Liu S; Wu QY; Cao XJ; Wang JN; Zhang LL; Cai DQ; Zhou LY; Liu N Huan Jing Ke Xue; 2016 Jan; 37(1):270-9. PubMed ID: 27078967 [TBL] [Abstract][Full Text] [Related]
13. How sulfate-rich mine drainage affected aquatic ecosystem degradation in northeastern China, and potential ecological risk. Zhao Q; Guo F; Zhang Y; Ma S; Jia X; Meng W Sci Total Environ; 2017 Dec; 609():1093-1102. PubMed ID: 28787783 [TBL] [Abstract][Full Text] [Related]
14. Impacts of point-source Net Alkaline Mine Drainage (NAMD) on stream macroinvertebrate communities. Kimmel WG; Argent DG J Environ Manage; 2019 Nov; 250():109484. PubMed ID: 31487601 [TBL] [Abstract][Full Text] [Related]
15. Changes in macroinvertebrate community structure provide evidence of neutral mine drainage impacts. Byrne P; Reid I; Wood PJ Environ Sci Process Impacts; 2013 Feb; 15(2):393-404. PubMed ID: 25208704 [TBL] [Abstract][Full Text] [Related]
16. Effect of dumping and cleaning activities on the aquatic ecosystems of the Guadiamar River following a toxic flood. Prat N; Toja J; Solà C; Burgos MD; Plans M; Rieradevall M Sci Total Environ; 1999 Dec; 242(1-3):231-48. PubMed ID: 10635582 [TBL] [Abstract][Full Text] [Related]
17. Using molecular biomarkers and traditional morphometric measurements to assess the health of slimy sculpin (Cottus cognatus) from streams with elevated selenium in North-Eastern British Columbia. Miller LL; Isaacs MA; Martyniuk CJ; Munkittrick KR Environ Toxicol Chem; 2015 Oct; 34(10):2335-46. PubMed ID: 25982233 [TBL] [Abstract][Full Text] [Related]
18. [Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream]. Qu XD; Yu Y; Zhang M; Duan LF; Peng WQ Huan Jing Ke Xue; 2018 Feb; 39(2):783-791. PubMed ID: 29964842 [TBL] [Abstract][Full Text] [Related]
19. A multitrophic approach to monitoring the effects of metal mining in otherwise pristine and ecologically sensitive rivers in northern Canada. Spencer P; Bowman MF; Dubé MG Integr Environ Assess Manag; 2008 Jul; 4(3):327-43. PubMed ID: 18597569 [TBL] [Abstract][Full Text] [Related]
20. Depauperate macroinvertebrates in a mine affected stream: clean water may be the key to recovery. Battaglia M; Hose GC; Turak E; Warden B Environ Pollut; 2005 Nov; 138(1):132-41. PubMed ID: 15894413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]