These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30041455)

  • 1. Assembly Mechanism for Aggregation of Amyloid Fibrils.
    Zhang L
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30041455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay.
    O'Nuallain B; Thakur AK; Williams AD; Bhattacharyya AM; Chen S; Thiagarajan G; Wetzel R
    Methods Enzymol; 2006; 413():34-74. PubMed ID: 17046390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.
    Kashchiev D
    Biophys J; 2015 Nov; 109(10):2126-36. PubMed ID: 26588571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregate geometry in amyloid fibril nucleation.
    Irbäck A; Jónsson SÆ; Linnemann N; Linse B; Wallin S
    Phys Rev Lett; 2013 Feb; 110(5):058101. PubMed ID: 23414048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of Mutant Huntingtin Exon-1 Fragments into Large Complex Fibrillar Structures Involves Nucleated Branching.
    Wagner AS; Politi AZ; Ast A; Bravo-Rodriguez K; Baum K; Buntru A; Strempel NU; Brusendorf L; Hänig C; Boeddrich A; Plassmann S; Klockmeier K; Ramirez-Anguita JM; Sanchez-Garcia E; Wolf J; Wanker EE
    J Mol Biol; 2018 Jun; 430(12):1725-1744. PubMed ID: 29601786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid fibril formation by the chain B subunit of monellin occurs by a nucleation-dependent polymerization mechanism.
    Sabareesan AT; Udgaonkar JB
    Biochemistry; 2014 Feb; 53(7):1206-17. PubMed ID: 24495141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and thermodynamics of amyloid fibril assembly.
    Wetzel R
    Acc Chem Res; 2006 Sep; 39(9):671-9. PubMed ID: 16981684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils.
    Buell AK
    Int Rev Cell Mol Biol; 2017; 329():187-226. PubMed ID: 28109328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of amyloid fibril formation from chemical depolymerization.
    Vettore N; Buell AK
    Phys Chem Chem Phys; 2019 Dec; 21(47):26184-26194. PubMed ID: 31755512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid fibril nucleation: effect of amino acid hydrophobicity.
    Auer S
    J Phys Chem B; 2014 May; 118(20):5289-99. PubMed ID: 24784223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors.
    Michaels TCT; Šarić A; Meisl G; Heller GT; Curk S; Arosio P; Linse S; Dobson CM; Vendruscolo M; Knowles TPJ
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24251-24257. PubMed ID: 32929030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP.
    Serrano AL; Lomont JP; Tu LH; Raleigh DP; Zanni MT
    J Am Chem Soc; 2017 Nov; 139(46):16748-16758. PubMed ID: 29072444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.
    Honda R; Kuwata K
    FASEB J; 2018 Jul; 32(7):3641-3652. PubMed ID: 29401635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-Based Classification and Modeling of Amyloid Fibrils.
    Grazioli G; Yu Y; Unhelkar MH; Martin RW; Butts CT
    J Phys Chem B; 2019 Jul; 123(26):5452-5462. PubMed ID: 31095387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid fibril polymorphism is under kinetic control.
    Pellarin R; Schuetz P; Guarnera E; Caflisch A
    J Am Chem Soc; 2010 Oct; 132(42):14960-70. PubMed ID: 20923147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Investigation of the kinetics of insulin amyloid fibrils formation].
    Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The growth of amyloid fibrils: rates and mechanisms.
    Buell AK
    Biochem J; 2019 Oct; 476(19):2677-2703. PubMed ID: 31654060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.