These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30041920)

  • 1. Decision support system for detection of hypertensive retinopathy using arteriovenous ratio.
    Akbar S; Akram MU; Sharif M; Tariq A; Khan SA
    Artif Intell Med; 2018 Aug; 90():15-24. PubMed ID: 30041920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arteriovenous ratio and papilledema based hybrid decision support system for detection and grading of hypertensive retinopathy.
    Akbar S; Akram MU; Sharif M; Tariq A; Yasin UU
    Comput Methods Programs Biomed; 2018 Feb; 154():123-141. PubMed ID: 29249337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and Grading of Hypertensive Retinopathy Using Vessels Tortuosity and Arteriovenous Ratio.
    Badawi SA; Fraz MM; Shehzad M; Mahmood I; Javed S; Mosalam E; Nileshwar AK
    J Digit Imaging; 2022 Apr; 35(2):281-301. PubMed ID: 35013827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided diagnostic system for hypertensive retinopathy: A review.
    Suman S; Tiwari AK; Singh K
    Comput Methods Programs Biomed; 2023 Oct; 240():107627. PubMed ID: 37320942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
    Niemeijer M; Xu X; Dumitrescu AV; Gupta P; van Ginneken B; Folk JC; Abramoff MD
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1941-50. PubMed ID: 21690008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images.
    Muramatsu C; Hatanaka Y; Iwase T; Hara T; Fujita H
    Comput Med Imaging Graph; 2011 Sep; 35(6):472-80. PubMed ID: 21489750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decision Support System for Detection of Papilledema through Fundus Retinal Images.
    Akbar S; Akram MU; Sharif M; Tariq A; Yasin UU
    J Med Syst; 2017 Apr; 41(4):66. PubMed ID: 28283997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy.
    Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P
    Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automatic graph-based approach for artery/vein classification in retinal images.
    Dashtbozorg B; Mendonça AM; Campilho A
    IEEE Trans Image Process; 2014 Mar; 23(3):1073-83. PubMed ID: 23693131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated characterization of blood vessels as arteries and veins in retinal images.
    Mirsharif Q; Tajeripour F; Pourreza H
    Comput Med Imaging Graph; 2013; 37(7-8):607-17. PubMed ID: 23849699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Support system for the preventive diagnosis of hypertensive retinopathy.
    Ortíz D; Cubides M; Suárez A; Zequera M; Quiroga J; Gómez J; Arroyo N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5649-52. PubMed ID: 21097309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Color Fundus Image Guided Artery-Vein Differentiation in Optical Coherence Tomography Angiography.
    Alam M; Toslak D; Lim JI; Yao X
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):4953-4962. PubMed ID: 30326063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artery/vein classification of retinal vessels using classifiers fusion.
    Yin XX; Irshad S; Zhang Y
    Health Inf Sci Syst; 2019 Dec; 7(1):26. PubMed ID: 31749960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of exudates and macula for grading of diabetic macular edema.
    Akram MU; Tariq A; Khan SA; Javed MY
    Comput Methods Programs Biomed; 2014 Apr; 114(2):141-52. PubMed ID: 24548898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of microaneurysms in retinal fundus images.
    Wu B; Zhu W; Shi F; Zhu S; Chen X
    Comput Med Imaging Graph; 2017 Jan; 55():106-112. PubMed ID: 27595214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic assessment of macular edema from color retinal images.
    Deepak KS; Sivaswamy J
    IEEE Trans Med Imaging; 2012 Mar; 31(3):766-76. PubMed ID: 22167598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes.
    Popovic N; Radunovic M; Badnjar J; Popovic T
    Microvasc Res; 2018 Jul; 118():36-43. PubMed ID: 29476757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of hypertensive retinopathy using vessel measurements and textural features.
    Agurto C; Joshi V; Nemeth S; Soliz P; Barriga S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5406-9. PubMed ID: 25571216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques.
    Akram MU; Tariq A; Khalid S; Javed MY; Abbas S; Yasin UU
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):643-55. PubMed ID: 26399880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of neovascularization in retinal images using multivariate m-Mediods based classifier.
    Usman Akram M; Khalid S; Tariq A; Younus Javed M
    Comput Med Imaging Graph; 2013; 37(5-6):346-57. PubMed ID: 23916066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.