These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779 [TBL] [Abstract][Full Text] [Related]
3. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors. Samuel OW; Geng Y; Li X; Li G J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913 [TBL] [Abstract][Full Text] [Related]
4. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Khushaba RN; Takruri M; Miro JV; Kodagoda S Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224 [TBL] [Abstract][Full Text] [Related]
5. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition. Khushaba RN; Al-Timemy AH; Al-Ani A; Al-Jumaily A IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1821-1831. PubMed ID: 28358690 [TBL] [Abstract][Full Text] [Related]
6. Spatially Filtered Low-Density EMG and Time-Domain Descriptors Improves Hand Movement Recognition. Al Taee AA; Khushaba RN; Al-Jumaily A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2671-2674. PubMed ID: 31946445 [TBL] [Abstract][Full Text] [Related]
7. Spatio-Temporal Based Descriptor for Limb Movement-Intent Characterization in EMG-Pattern Recognition System. Samuel OW; Grace Asogbon M; Geng Y; Li X; Pirbhulal S; Chen S; Ganesh N; Feng P; Li G Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2637-2640. PubMed ID: 31946437 [TBL] [Abstract][Full Text] [Related]
8. Towards resolving the co-existing impacts of multiple dynamic factors on the performance of EMG-pattern recognition based prostheses. Asogbon MG; Samuel OW; Geng Y; Oluwagbemi O; Ning J; Chen S; Ganesh N; Feng P; Li G Comput Methods Programs Biomed; 2020 Feb; 184():105278. PubMed ID: 31901634 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501 [TBL] [Abstract][Full Text] [Related]
10. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study. Kryger M; Schultz AE; Kuiken T Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053 [TBL] [Abstract][Full Text] [Related]
11. Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees. Al-Timemy AH; Khushaba RN; Bugmann G; Escudero J IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):650-61. PubMed ID: 26111399 [TBL] [Abstract][Full Text] [Related]
12. Motion recognition for simultaneous control of multifunctional transradial prostheses. Jiang N; Tian L; Fang P; Dai Y; Li G Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1603-6. PubMed ID: 24110009 [TBL] [Abstract][Full Text] [Related]
13. Selecting the optimal movement subset with different pattern recognition based EMG control algorithms. Al-Timemy AH; Khushaba RN; Escudero J Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():315-318. PubMed ID: 28268340 [TBL] [Abstract][Full Text] [Related]
14. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees. Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443 [TBL] [Abstract][Full Text] [Related]
15. Towards reducing the impacts of unwanted movements on identification of motion intentions. Li X; Chen S; Zhang H; Samuel OW; Wang H; Fang P; Zhang X; Li G J Electromyogr Kinesiol; 2016 Jun; 28():90-8. PubMed ID: 27093136 [TBL] [Abstract][Full Text] [Related]
16. Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation. Liu J; Sheng X; Zhang D; He J; Zhu X IEEE J Biomed Health Inform; 2016 Jan; 20(1):166-76. PubMed ID: 25532196 [TBL] [Abstract][Full Text] [Related]
17. A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis. Al-Timemy AH; Bugmann G; Escudero J; Outram N Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5758-61. PubMed ID: 24111046 [TBL] [Abstract][Full Text] [Related]
18. Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses. Samuel OW; Li X; Geng Y; Asogbon MG; Fang P; Huang Z; Li G Comput Biol Med; 2017 Nov; 90():76-87. PubMed ID: 28961473 [TBL] [Abstract][Full Text] [Related]
19. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition. Zhang X; Huang H J Neuroeng Rehabil; 2015 Feb; 12():18. PubMed ID: 25888946 [TBL] [Abstract][Full Text] [Related]
20. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]